指数相乘计算器

输入一组指数数据,快速计算它们的积。

计算指数的乘积

结果

如何计算两个指数的乘积?

底数相同的情况:

当两个指数的底数相同,底数不变,指数相加,公式为: \( a^m \times a^n = a^{m+n} \)

示例:计算 \( 4^2 \times 4^3 \)

解答:

\( 4^2 \times 4^3 = 4^{2 + 3} = 4^5 = 1024 \)

所以,\( 4^2 \times 4^3 = 1024 \)

底数不同的情况:

当两个指数的底数不同,计算时,先分别计算每个指数的值,然后将结果相乘。

数据格式说明

  • 底数与指数之间用 ^ 分隔。
  • 数据之间可以用逗号(, )、分号(; )或回车换行隔开,或者使用它们的组合隔开。

如:a^m, b^n, c^p

2^4; 3^3; 5^1

a^m, b^n, c^p; 2^4; 3^3; 5^1

示例

示例 1:计算 \( 2^4 \times 2^3 \)。

解答:

输入数据(逗号分隔):2^4, 2^3

底数相同,指数相加:

\( 2^4 \times 2^3 = 2^{4 + 3} = 2^7 = 128 \)

结论:\( 2^4 \times 2^3 = 128 \)

示例 2:计算 \( 5^2 \times 7^3 \times 3^4 \)。

解答:

输入数据(分号分隔):5^2; 7^3; 3^4

计算:

\( 5^2 = 25 \)

\( 7^3 = 343 \)

\( 3^4 = 81 \)

结果:\( 25 \times 343 \times 81 = 694575 \)

结论:\( 5^2 \times 7^3 \times 3^4 = 694575 \)。

示例 3:计算 \( 10^2 \times 2^5 \times 3^3 \)。

解答:

输入数据(逗号+分号分隔):10^2, 2^5; 3^3

计算:

\( 10^2 = 100 \)

\( 2^5 = 32 \)

\( 3^3 = 27 \)

结果:\( 100 \times 32 \times 27 = 86400 \)

结论:\( 10^2 \times 2^5 \times 3^3 = 86400 \)。