输入两个坐标,快速计算这两个坐标的中点位置。
在平面几何中,中点是连接两点的线段的中心位置。对于给定的两个坐标点 \( (x_1, y_1) \) 和 \( (x_2, y_2) \),可以计算出它们的中点 \( M \) 的坐标。
假设两点的坐标分别为 \( (x_1, y_1) \) 和 \( (x_2, y_2) \),则中点 \( M(x, y) \) 的坐标为: \( x = \frac{x_1 + x_2}{2} \) \( y = \frac{y_1 + y_2}{2} \)
解答:
\( x = \frac{2 + 8}{2} = 5 \)
\( y = \frac{3 + 7}{2} = 5 \)
结果:中点 \( M(5, 5) \)
解答:
\( x = \frac{-4 + 10}{2} = 3 \)
\( y = \frac{6 + (-2)}{2} = 2 \)
结果:中点 \( M(3, 2) \)