斐波那契序列计算器

输入一个数,判断是否属于斐波那契序列;或者输入N,快速计算第N项值与总和。

斐波那契序列计算器

什么是斐波那契序列?

斐波那契序列是一种数列,其中每一项等于前两项之和,数列从0和1开始,即:

  • \( F_0 = 0 \)
  • \( F_1 = 1 \)
  • \( F_n = F_{n-1} + F_{n-2} (n \geq 2) \)

如何判断一个数是否属于斐波那契序列

可以通过以下方法来判断一个数 \( x \) 是否属于斐波那契数列:

判断条件:一个数 \( x \) 如果是斐波那契数列的某一项,那么它满足以下两个条件中的至少一个: \( 5x^2 + 4 \text{ 或 } 5x^2 - 4 \) 其中之一是完全平方数,则 \( x \) 是斐波那契数。

示例

例子 1:判断数 13 是否属于斐波那契序列。

解答:

计算 \( 5 \times 13^2 + 4 = 5 \times 169 + 4 = 845 + 4 = 849 \)。

计算 \( 5 \times 13^2 - 4 = 5 \times 169 - 4 = 845 - 4 = 841 \)。

841 是一个完全平方数(\( \sqrt{841} = 29 \)),因此,13 属于斐波那契序列。

例子 2:判断数 101 是否属于斐波那契序列。

解答:

计算 \( 5 \times 101^2 + 4 = 5 \times 10201 + 4 = 51005 + 4 = 51009 \)。

计算 \( 5 \times 101^2 - 4 = 5 \times 10201 - 4 = 51005 - 4 = 51001 \)。

51009 和 51001 都不是完全平方数,所以,101 不属于斐波那契序列。

斐波那契序列前 100 项

  • F0 = 0
  • F1 = 1
  • F2 = 1
  • F3 = 2
  • F4 = 3
  • F5 = 5
  • F6 = 8
  • F7 = 13
  • F8 = 21
  • F9 = 34
  • F10 = 55
  • F11 = 89
  • F12 = 144
  • F13 = 233
  • F14 = 377
  • F15 = 610
  • F16 = 987
  • F17 = 1597
  • F18 = 2584
  • F19 = 4181
  • F20 = 6765
  • F21 = 10946
  • F22 = 17711
  • F23 = 28657
  • F24 = 46368
  • F25 = 75025
  • F26 = 121393
  • F27 = 196418
  • F28 = 317811
  • F29 = 514229
  • F30 = 832040
  • F31 = 1346269
  • F32 = 2178309
  • F33 = 3524578
  • F34 = 5702887
  • F35 = 9227465
  • F36 = 14930352
  • F37 = 24157817
  • F38 = 39088169
  • F39 = 63245986
  • F40 = 102334155
  • F41 = 165580141
  • F42 = 267914296
  • F43 = 433494437
  • F44 = 701408733
  • F45 = 1134903170
  • F46 = 1836311903
  • F47 = 2971215073
  • F48 = 4807526976
  • F49 = 7778742049
  • F50 = 12586269025
  • F51 = 20365011074
  • F52 = 32951280099
  • F53 = 53316291173
  • F54 = 86267571272
  • F55 = 139583862445
  • F56 = 225851433717
  • F57 = 365435296162
  • F58 = 591286729879
  • F59 = 956722026041
  • F60 = 1548008755920
  • F61 = 2504730781961
  • F62 = 4052739537881
  • F63 = 6557470319842
  • F64 = 10610209857723
  • F65 = 17167680177565
  • F66 = 27777890035288
  • F67 = 44945570212853
  • F68 = 72723460248141
  • F69 = 117669030460994
  • F70 = 190392490709135
  • F71 = 308061521170129
  • F72 = 498454011879264
  • F73 = 806515533049393
  • F74 = 1304969544928657
  • F75 = 2111485077978050
  • F76 = 3416454622906707
  • F77 = 5527939700884757
  • F78 = 8944394323791464
  • F79 = 14472334024676220
  • F80 = 23416728348467684
  • F81 = 37889062373143900
  • F82 = 61305790721611580
  • F83 = 99194853094755490
  • F84 = 160500643816367070
  • F85 = 259695496911122560
  • F86 = 420196140727489660
  • F87 = 679891637638612200
  • F88 = 1100087778366101900
  • F89 = 1779979416004714000
  • F90 = 2880067194370816000
  • F91 = 4660046610375530000
  • F92 = 7540113804746346000
  • F93 = 12200160415121877000
  • F94 = 19740274219868226000
  • F95 = 31940434634990100000
  • F96 = 51680708854858330000
  • F97 = 83621143489848430000
  • F98 = 135301852344706760000
  • F99 = 218922995834555200000
  • F100 = 354224848179262000000