Versine Calculator

Input an angle in degrees or radians to calculate the corresponding versine value instantly.

Calculate versin(θ)

Result

What Is the Versine Function?

The versine function (commonly written as \( \text{versin}(\theta) \)) is a historical trigonometric function that represents the complementary value of the cosine function. The formula for the versine function is: \( \text{versin}(\theta) = 1 - \cos(\theta) \) This means the versine measures the deviation or offset from the cosine value.

For \( \theta = 60^\circ \): \( \text{versin}(60^\circ) = 1 - \cos(60^\circ) = 1 - 0.5 = 0.5 \)

Graph of the Versine Function

versine graph

The versine function's graph appears as a sine wave with a positive vertical shift.

  • Periodicity: Periodicity
  • Domain: Defined for all real numbers \( \mathbb{R} \).
  • Range: \( \text{versin}(\theta) \in [0, 2] \).
  • Amplitude: Maximum value is \( 2 \), and minimum value is \( 0 \).
  • Wave Characteristics: Reaches a minimum value of \( 0 \) at \( \theta = 0 \) and \( \theta = 2\pi \). Reaches a maximum value of \( 2 \) at \( \theta = \pi \).

Versine Conversion Table

Degree Radian Versine Value
00
\(\frac{\pi}{36}\)0.0038053
10°\(\frac{\pi}{18}\)0.01519225
15°\(\frac{\pi}{12}\)0.03407417
20°\(\frac{\pi}{9}\)0.06030738
25°\(\frac{5\pi}{36}\)0.09369221
30°\(\frac{\pi}{6}\)0.1339746
35°\(\frac{7\pi}{36}\)0.18084796
40°\(\frac{2\pi}{9}\)0.23395556
45°\(\frac{\pi}{4}\)0.29289322
50°\(\frac{5\pi}{18}\)0.35721239
55°\(\frac{11\pi}{36}\)0.42642356
60°\(\frac{\pi}{3}\)0.5
65°\(\frac{13\pi}{36}\)0.57738174
70°\(\frac{7\pi}{18}\)0.65797986
75°\(\frac{5\pi}{12}\)0.74118095
80°\(\frac{4\pi}{9}\)0.82635182
85°\(\frac{17\pi}{36}\)0.91284426
90°\(\frac{\pi}{2}\)1
95°\(\frac{19\pi}{36}\)1.08715574
100°\(\frac{5\pi}{9}\)1.17364818
105°\(\frac{7\pi}{12}\)1.25881905
110°\(\frac{11\pi}{18}\)1.34202014
115°\(\frac{23\pi}{36}\)1.42261826
120°\(\frac{2\pi}{3}\)1.5
125°\(\frac{25\pi}{36}\)1.57357644
130°\(\frac{13\pi}{18}\)1.64278761
135°\(\frac{3\pi}{4}\)1.70710678
140°\(\frac{7\pi}{9}\)1.76604444
145°\(\frac{29\pi}{36}\)1.81915204
150°\(\frac{5\pi}{6}\)1.8660254
155°\(\frac{31\pi}{36}\)1.90630779
160°\(\frac{8\pi}{9}\)1.93969262
165°\(\frac{11\pi}{12}\)1.96592583
170°\(\frac{17\pi}{18}\)1.98480775
175°\(\frac{35\pi}{36}\)1.9961947
180°π2
185°\(\frac{37\pi}{36}\)1.9961947
190°\(\frac{19\pi}{18}\)1.98480775
195°\(\frac{13\pi}{12}\)1.96592583
200°\(\frac{10\pi}{9}\)1.93969262
205°\(\frac{41\pi}{36}\)1.90630779
210°\(\frac{7\pi}{6}\)1.8660254
215°\(\frac{43\pi}{36}\)1.81915204
220°\(\frac{11\pi}{9}\)1.76604444
225°\(\frac{5\pi}{4}\)1.70710678
230°\(\frac{23\pi}{18}\)1.64278761
235°\(\frac{47\pi}{36}\)1.57357644
240°\(\frac{4\pi}{3}\)1.5
245°\(\frac{49\pi}{36}\)1.42261826
250°\(\frac{25\pi}{18}\)1.34202014
255°\(\frac{17\pi}{12}\)1.25881905
260°\(\frac{13\pi}{9}\)1.17364818
265°\(\frac{53\pi}{36}\)1.08715574
270°\(\frac{3\pi}{2}\)1
275°\(\frac{55\pi}{36}\)0.91284426
280°\(\frac{14\pi}{9}\)0.82635182
285°\(\frac{19\pi}{12}\)0.74118095
290°\(\frac{29\pi}{18}\)0.65797986
295°\(\frac{59\pi}{36}\)0.57738174
300°\(\frac{5\pi}{3}\)0.5
305°\(\frac{61\pi}{36}\)0.42642356
310°\(\frac{31\pi}{18}\)0.35721239
315°\(\frac{7\pi}{4}\)0.29289322
320°\(\frac{16\pi}{9}\)0.23395556
325°\(\frac{65\pi}{36}\)0.18084796
330°\(\frac{11\pi}{6}\)0.1339746
335°\(\frac{67\pi}{36}\)0.09369221
340°\(\frac{17\pi}{9}\)0.06030738
345°\(\frac{23\pi}{12}\)0.03407417
350°\(\frac{35\pi}{18}\)0.01519225
355°\(\frac{71\pi}{36}\)0.0038053
360°0