Enter two fractions to calculate their sum.
When adding fractions, whether they are mixed fractions (e.g., \( 2\frac{3}{4} \)) or simple fractions (e.g., \( \frac{3}{4} \)), you can follow these steps:
Solution:
1. Separate the fractions:
\( 2\frac{3}{4} = 2 + \frac{3}{4} \)
\( 1\frac{5}{6} = 1 + \frac{5}{6} \)
2. Find a common denominator:
The least common denominator of 4 and 6 is 12.
Convert \( \frac{3}{4} \) to \( \frac{9}{12} \), and \( \frac{5}{6} \) to \( \frac{10}{12} \).
3. Add the fractional and whole parts:
\( \text{Fractional part sum:} \quad \frac{9}{12} + \frac{10}{12} = \frac{19}{12} = 1\frac{7}{12} \)
\( \text{Whole part sum:} \quad 2 + 1 = 3 \)
4. Combine the results:
\( 3 + 1\frac{7}{12} = 4\frac{7}{12} \)
Result: \( 2\frac{3}{4} + 1\frac{5}{6} = 4\frac{7}{12} \)
Solution:
1. Find a common denominator:
The least common denominator of 4 and 6 is 12.
Convert \( \frac{3}{4} \) to \( \frac{9}{12} \), and \( \frac{5}{6} \) to \( \frac{10}{12} \).
2. Add the fractions:
\( \frac{9}{12} + \frac{10}{12} = \frac{19}{12} = 1\frac{7}{12} \)
Result: \(\frac{3}{4} + \frac{5}{6} = 1\frac{7}{12}\)
Solution:
1. Separate the fractions:
\( 3\frac{1}{2} = 3 + \frac{1}{2} \)
2. Find a common denominator:
The least common denominator of 2 and 3 is 6.
Convert \( \frac{1}{2} \) to \( \frac{3}{6} \), and \( \frac{2}{3} \) to \( \frac{4}{6} \).
3. Add the fractional and whole parts:
\( \text{Fractional part sum:} \quad \frac{3}{6} + \frac{4}{6} = \frac{7}{6} = 1\frac{1}{6} \)
\( \text{Whole part sum:} \quad 3 + 0 = 3 \)
4. Combine the results:
\( 3 + 1\frac{1}{6} = 4\frac{1}{6} \)
Result: \( 3\frac{1}{2} + \frac{2}{3} = 4\frac{1}{6} \)