Perrin Sequence Calculator

Enter a number to check if it belongs to the Perrin sequence, or input N to calculate the Nth term and the cumulative sum.

Perrin Sequence Calculate

What Is the Perrin Sequence?

The Perrin sequence is a series of integers defined by the following rules:

  • Initial Values: \( P(0) = 3, P(1) = 0, P(2) = 2 \)
  • Recurrence Relation: For \( n \geq 3 \), \( P(n) = P(n-2) + P(n-3) \).

The Perrin sequence shares the same recurrence relation as the Padovan sequence but starts with different initial values. The sequence begins as follows: 3, 0, 2, 3, 2, 5, 7, 12, 19, 31, and so on.

How to Determine if a Number Is in the Perrin Sequence

  1. Generate the Sequence: Compute the Perrin sequence terms using the recurrence relation until the number is reached or exceeded.
  2. Compare: Check if the number is present in the generated sequence.
  3. Result: If the number exists in the sequence, it belongs to the Perrin sequence; otherwise, it does not.

Examples

Example 1: Check if 5 Is in the Perrin Sequence

Solution:

Generate the sequence:

\( P(0) = 3 \)

\( P(1) = 0 \)

\( P(2) = 2 \)

\( P(3) = P(1) + P(0) = 0 + 3 = 3 \)

\( P(4) = P(2) + P(1) = 2 + 0 = 2 \)

\( P(5) = P(3) + P(2) = 3 + 2 = 5 \)

Result:

Since \( P(5) = 5 \), the number 5 belongs to the Perrin sequence.

Example 2: Check if 119 Is in the Perrin Sequence

Solution:

Generate the sequence:

\( P(0) = 3 \)

\( P(1) = 0 \)

\( P(2) = 2 \)

\( P(3) = P(1) + P(0) = 0 + 3 = 3 \)

\( P(4) = P(2) + P(1) = 2 + 0 = 2 \)

\( P(5) = P(3) + P(2) = 3 + 2 = 5 \)

\( P(15) = P(13) + P(12) = 39 + 29 = 68 \)

\( P(16) = P(14) + P(13) = 51 + 39 = 90 \)

\( P(17) = P(15) + P(14) = 68 + 51 = 119 \)

Result:

The number 119 belongs to the Perrin sequence.

Example 3: Check if 2025 Is in the Perrin Sequence

Solution:

Generate the sequence:

\( P(0) = 3 \)

\( P(1) = 0 \)

\( P(2) = 2 \)

\( P(3) = P(1) + P(0) = 0 + 3 = 3 \)

\( P(4) = P(2) + P(1) = 2 + 0 = 2 \)

\( P(5) = P(3) + P(2) = 3 + 2 = 5 \)

\( P(26) = P(24) + P(23) = 853 + 644 = 1497 \)

\( P(27) = P(25) + P(24) = 1130 + 853 = 1983 \)

\( P(28) = P(26) + P(25) = 1497 + 1130 = 2627 \)

Result:

\( P(28) = 2627 > 2025 \). So, the number 2025 does not belong to the Perrin sequence.

The First 100 Perrin Numbers

  • P(0) = 3
  • P(1) = 0
  • P(2) = 2
  • P(3) = 3
  • P(4) = 2
  • P(5) = 5
  • P(6) = 5
  • P(7) = 7
  • P(8) = 10
  • P(9) = 12
  • P(10) = 17
  • P(11) = 22
  • P(12) = 29
  • P(13) = 39
  • P(14) = 51
  • P(15) = 68
  • P(16) = 90
  • P(17) = 119
  • P(18) = 158
  • P(19) = 209
  • P(20) = 277
  • P(21) = 367
  • P(22) = 486
  • P(23) = 644
  • P(24) = 853
  • P(25) = 1130
  • P(26) = 1497
  • P(27) = 1983
  • P(28) = 2627
  • P(29) = 3480
  • P(30) = 4610
  • P(31) = 6107
  • P(32) = 8090
  • P(33) = 10717
  • P(34) = 14197
  • P(35) = 18807
  • P(36) = 24914
  • P(37) = 33004
  • P(38) = 43721
  • P(39) = 57918
  • P(40) = 76725
  • P(41) = 101639
  • P(42) = 134643
  • P(43) = 178364
  • P(44) = 236282
  • P(45) = 313007
  • P(46) = 414646
  • P(47) = 549289
  • P(48) = 727653
  • P(49) = 963935
  • P(50) = 1276942
  • P(51) = 1691588
  • P(52) = 2240877
  • P(53) = 2968530
  • P(54) = 3932465
  • P(55) = 5209407
  • P(56) = 6900995
  • P(57) = 9141872
  • P(58) = 12110402
  • P(59) = 16042867
  • P(60) = 21252274
  • P(61) = 28153269
  • P(62) = 37295141
  • P(63) = 49405543
  • P(64) = 65448410
  • P(65) = 86700684
  • P(66) = 114853953
  • P(67) = 152149094
  • P(68) = 201554637
  • P(69) = 267003047
  • P(70) = 353703731
  • P(71) = 468557684
  • P(72) = 620706778
  • P(73) = 822261415
  • P(74) = 1089264462
  • P(75) = 1442968193
  • P(76) = 1911525877
  • P(77) = 2532232655
  • P(78) = 3354494070
  • P(79) = 4443758532
  • P(80) = 5886726725
  • P(81) = 7798252602
  • P(82) = 10330485257
  • P(83) = 13684979327
  • P(84) = 18128737859
  • P(85) = 24015464584
  • P(86) = 31813717186
  • P(87) = 42144202443
  • P(88) = 55829181770
  • P(89) = 73957919629
  • P(90) = 97973384213
  • P(91) = 129787101399
  • P(92) = 171931303842
  • P(93) = 227760485612
  • P(94) = 301718405241
  • P(95) = 399691789454
  • P(96) = 529478890853
  • P(97) = 701410194695
  • P(98) = 929170680307
  • P(99) = 1230889085548
  • P(100) = 1630580875002