Padovan Sequence Calculator

Enter a number to see if it belongs to the Padovan Sequence, or input \( N \) to calculate the Nth term and its total sum.

Padovan Sequence Calculate

What is the Padovan Sequence?

The Padovan Sequence is an integer sequence defined as follows:

  • Initial terms: \( P(0) = P(1) = P(2) = 1 \)
  • Recurrence relation: For \( n \geq 3 \), \( P(n) = P(n-2) + P(n-3) \)

How to Check if a Number Belongs to the Padovan Sequence

  1. Generate the Sequence: Compute Padovan Sequence terms using the recurrence relation until the generated value equals or exceeds the input number.
  2. Compare: Verify whether the input number exists in the generated sequence.
  3. Result: If the number is found, it belongs to the sequence; otherwise, it does not.

Examples

Example 1: Check if 5 Belongs to the Padovan Sequence

Solution:

Generate the sequence: 1, 1, 1, 2, 3, 4, 5.

Result: 5 is part of the Padovan Sequence.

Example 2: Check if 10 Belongs to the Padovan Sequence

Solution:

Generate the sequence: 1, 1, 1, 2, 3, 4, 5, 7, 9, 12.

Result: 10 is not part of the Padovan Sequence.

The First 100 Terms of the Padovan Sequence

  • P(0) = 1
  • P(1) = 1
  • P(2) = 1
  • P(3) = 2
  • P(4) = 2
  • P(5) = 3
  • P(6) = 4
  • P(7) = 5
  • P(8) = 7
  • P(9) = 9
  • P(10) = 12
  • P(11) = 16
  • P(12) = 21
  • P(13) = 28
  • P(14) = 37
  • P(15) = 49
  • P(16) = 65
  • P(17) = 86
  • P(18) = 114
  • P(19) = 151
  • P(20) = 200
  • P(21) = 265
  • P(22) = 351
  • P(23) = 465
  • P(24) = 616
  • P(25) = 816
  • P(26) = 1081
  • P(27) = 1432
  • P(28) = 1897
  • P(29) = 2513
  • P(30) = 3329
  • P(31) = 4410
  • P(32) = 5842
  • P(33) = 7739
  • P(34) = 10252
  • P(35) = 13581
  • P(36) = 17991
  • P(37) = 23833
  • P(38) = 31572
  • P(39) = 41824
  • P(40) = 55405
  • P(41) = 73396
  • P(42) = 97229
  • P(43) = 128801
  • P(44) = 170625
  • P(45) = 226030
  • P(46) = 299426
  • P(47) = 396655
  • P(48) = 525456
  • P(49) = 696081
  • P(50) = 922111
  • P(51) = 1221537
  • P(52) = 1618192
  • P(53) = 2143648
  • P(54) = 2839729
  • P(55) = 3761840
  • P(56) = 4983377
  • P(57) = 6601569
  • P(58) = 8745217
  • P(59) = 11584946
  • P(60) = 15346786
  • P(61) = 20330163
  • P(62) = 26931732
  • P(63) = 35676949
  • P(64) = 47261895
  • P(65) = 62608681
  • P(66) = 82938844
  • P(67) = 109870576
  • P(68) = 145547525
  • P(69) = 192809420
  • P(70) = 255418101
  • P(71) = 338356945
  • P(72) = 448227521
  • P(73) = 593775046
  • P(74) = 786584466
  • P(75) = 1042002567
  • P(76) = 1380359512
  • P(77) = 1828587033
  • P(78) = 2422362079
  • P(79) = 3208946545
  • P(80) = 4250949112
  • P(81) = 5631308624
  • P(82) = 7459895657
  • P(83) = 9882257736
  • P(84) = 13091204281
  • P(85) = 17342153393
  • P(86) = 22973462017
  • P(87) = 30433357674
  • P(88) = 40315615410
  • P(89) = 53406819691
  • P(90) = 70748973084
  • P(91) = 93722435101
  • P(92) = 124155792775
  • P(93) = 164471408185
  • P(94) = 217878227876
  • P(95) = 288627200960
  • P(96) = 382349636061
  • P(97) = 506505428836
  • P(98) = 670976837021
  • P(99) = 888855064897
  • P(100) = 1177482265857