Enter the sum of squares and difference of squares to find two numbers instantly!
Let \( x \) and \( y \) represent the two numbers. Suppose we know their sum of squares (\( S \)) and difference of squares (\( D \)).
\( (x^2 + y^2) + (x^2 - y^2) = S + D \)
\( 2x^2 = S + D \)
\( x^2 = \frac{S + D}{2} \)
\( (x^2 + y^2) - (x^2 - y^2) = S - D \)
\( 2y^2 = S - D \)
\( y^2 = \frac{S - D}{2} \)
Solution:
Calculate \( x \):
\( x = \sqrt{\frac{S + D}{2}} = \sqrt{\frac{74 + 24}{2}} = \sqrt{49} = 7 \)
Calculate \( y \):
\( y = \sqrt{\frac{S - D}{2}} = \sqrt{\frac{74 - 24}{2}}= \sqrt{25} = 5 \)
Result: The two numbers are 7 and 5.
Solution:
Calculate \( x \):
\( x = \sqrt{\frac{S + D}{2}} = \sqrt{\frac{313 + 25}{2}} = \sqrt{169} = 13 \)
Calculate \( y \):
\( y = \sqrt{\frac{S - D}{2}} = \sqrt{\frac{313 - 25}{2}}= \sqrt{144} = 12 \)
Result: The two numbers are 13 and 12.