Multiplying Exponents Calculator

Input a set of exponential expressions to quickly calculate their product.

Calculate the Product of Exponents

Result

How to Calculate the Product of Exponents

Case 1: Same Base

If the bases are the same, add the exponents while keeping the base unchanged. The formula is: \( a^m \times a^n = a^{m+n} \)

Example: Calculate \( 4^2 \times 4^3 \)

Solution:

\( 4^2 \times 4^3 = 4^{2 + 3} = 4^5 = 1024 \)

So, \( 4^2 \times 4^3 = 1024 \)

Case 2: Different Bases

If the bases are different, calculate each exponent separately, then multiply the results.

Input Format

  • Data Structure: Use ^ to separate the base and exponent.
  • Separators: Exponential expressions can be separated by commas (, ), semicolons (; ), or line breaks, or a combination of these.

For example: a^m, b^n, c^p

2^4; 3^3; 5^1

a^m, b^n, c^p; 2^4; 3^3; 5^1

Examples

Example 1: Calculate \( 2^4 \times 2^3 \).

Solution:

Input (comma separated): 2^4, 2^3

Same base, add exponents:

\( 2^4 \times 2^3 = 2^{4 + 3} = 2^7 = 128 \)

Result: \( 2^4 \times 2^3 = 128 \)

Example 2: Calculate \( 5^2 \times 7^3 \times 3^4 \).

Solution:

Input (semicolon separated): 5^2; 7^3; 3^4

Calculation:

\( 5^2 = 25 \)

\( 7^3 = 343 \)

\( 3^4 = 81 \)

\( 25 \times 343 \times 81 = 694575 \)

Result: \( 5^2 \times 7^3 \times 3^4 = 694575 \).

Example 3: Calculate \( 10^2 \times 2^5 \times 3^3 \).

Solution:

Input (comma and semicolon separated): 10^2, 2^5; 3^3

Calculation:

\( 10^2 = 100 \)

\( 2^5 = 32 \)

\( 3^3 = 27 \)

\( 100 \times 32 \times 27 = 86400 \)

Result: \( 10^2 \times 2^5 \times 3^3 = 86400 \).