MathBz MathBz
  • Home
  • Calculators
  • Checkers
  • Converters
  • Symbols
Search Site
Type and hit enter to search

Inverse Sine Calculator – Find The Exact Value of Arcsin

Inverse Sine Calculator is a free online tool to calculate the exact value of arcsin in degrees or radians.

Inverse Sine Calculator

Calculate Reset

What is arcsin?

Arcsine is an inverse trigonometric function, which refers to the inverse function of sine within -π2 to π2. Denoted as arcsin or sin-1. It is used to find angles based on the trigonometric ratio of the opposite side to the hypotenuse. Therefore, the formula for arcsine is:

sin(θ) = oppositehypotenuse

 

θ = arcsin(oppositehypotenuse)

If the sine function is represented by x and y (as follows)

y = sin(x), x∈[-π2, π2]

Then, the arcsine function can be expressed as:

x = arcsin(y), y∈[-1, 1]

In order to conform to the habit, define x as a variable and y as a dependent variable, so the arcsine function can be replaced by

y = arcsin(x),  x ∈[-1, 1],  y∈[-π2, π2]

Since sine is a periodic function, there cannot be a single-valued inverse function in the domain of sine. Therefore, the domain of the arcsine function can only be limited to the interval [-1, 1]. In this range, x and y are in one-to-one correspondence.

Arcsin graph and properties

Like sine, connecting each point of arcsine will form a smooth curve, as follows

arcsin graph

arcsin graph

Through this curve, we can summarize several characteristics of arcsine

  • Domain – The domain of arcsine is between -1 and 1.
  • Range – The range of arcsine is -π2 to π2.
  • Monotonicity – In the domain, the arcsine increases monotonically
  • Odd function – Since arcsin(x) = – arcsin (-x), arcsin is an odd function.

How to calculate arcsine?

Computing the arcsine by hand is uncommon, usually only some commonly used arcsines are computed.

For example

sin(30°) = 0.5. So, arcsin(0.5) = 30°

 

sin(90°) = 1. Thus, arcsin(1) = 90°

For some unfamiliar values, calculating the arcsine requires the help of an arcsine table or an arcsine calculator. The arcsine table (given below) lists the corresponding relationship between the sine value and the angle, which is convenient for finding the arcsine value. The disadvantage is that the numbers listed in the arcsine table are limited, and some uncommon values may not be found. So, it is recommended to use the arcsine calculator on this page so that you can easily find all arcsine values.

arcsine(x) Degrees Radians
-1 -90° -π2
-0.9998477 -89° -89π180
-0.99939083 -88° -22π45
-0.99862953 -87° -29π60
-0.99756405 -86° -43π90
-0.9961947 -85° -17π36
-0.9945219 -84° -7π15
-0.99254615 -83° -83π180
-0.99026807 -82° -41π90
-0.98768834 -81° -9π20
-0.98480775 -80° -4π9
-0.98162718 -79° -79π180
-0.9781476 -78° -13π30
-0.97437006 -77° -77π180
-0.97029573 -76° -19π45
-0.96592583 -75° -5π12
-0.9612617 -74° -37π90
-0.95630476 -73° -73π180
-0.95105652 -72° -2π5
-0.94551858 -71° -71π180
-0.93969262 -70° -7π18
-0.93358043 -69° -23π60
-0.92718385 -68° -17π45
-0.92050485 -67° -67π180
-0.91354546 -66° -11π30
-0.90630779 -65° -13π36
-0.89879405 -64° -16π45
-0.89100652 -63° -7π20
-0.88294759 -62° -31π90
-0.87461971 -61° -61π180
-0.8660254 -60° -1π3
-0.8571673 -59° -59π180
-0.8480481 -58° -29π90
-0.83867057 -57° -19π60
-0.82903757 -56° -14π45
-0.81915204 -55° -11π36
-0.80901699 -54° -3π10
-0.79863551 -53° -53π180
-0.78801075 -52° -13π45
-0.77714596 -51° -17π60
-0.76604444 -50° -5π18
-0.75470958 -49° -49π180
-0.74314483 -48° -4π15
-0.7313537 -47° -47π180
-0.7193398 -46° -23π90
-0.70710678 -45° -1π4
-0.69465837 -44° -11π45
-0.68199836 -43° -43π180
-0.66913061 -42° -7π30
-0.65605903 -41° -41π180
-0.64278761 -40° -2π9
-0.62932039 -39° -13π60
-0.61566148 -38° -19π90
-0.60181502 -37° -37π180
-0.58778525 -36° -1π5
-0.57357644 -35° -7π36
-0.5591929 -34° -17π90
-0.54463904 -33° -11π60
-0.52991926 -32° -8π45
-0.51503807 -31° -31π180
-0.5 -30° -1π6
-0.48480962 -29° -29π180
-0.46947156 -28° -7π45
-0.4539905 -27° -3π20
-0.43837115 -26° -13π90
-0.42261826 -25° -5π36
-0.40673664 -24° -2π15
-0.39073113 -23° -23π180
-0.37460659 -22° -11π90
-0.35836795 -21° -7π60
-0.34202014 -20° -1π9
-0.32556815 -19° -19π180
-0.30901699 -18° -1π10
-0.2923717 -17° -17π180
-0.27563736 -16° -4π45
-0.25881905 -15° -1π12
-0.2419219 -14° -7π90
-0.22495105 -13° -13π180
-0.20791169 -12° -1π15
-0.190809 -11° -11π180
-0.17364818 -10° -1π18
-0.15643447 -9° -1π20
-0.1391731 -8° -2π45
-0.12186934 -7° -7π180
-0.10452846 -6° -1π30
-0.08715574 -5° -1π36
-0.06975647 -4° -1π45
-0.05233596 -3° -1π60
-0.0348995 -2° -1π90
-0.01745241 -1° -1π180
0 0° 0
0.01745241 1° π180
0.0348995 2° π90
0.05233596 3° π60
0.06975647 4° π45
0.08715574 5° π36
0.10452846 6° π30
0.12186934 7° 7π180
0.1391731 8° 2π45
0.15643447 9° π20
0.17364818 10° π18
0.190809 11° 11π180
0.20791169 12° π15
0.22495105 13° 13π180
0.2419219 14° 7π90
0.25881905 15° π12
0.27563736 16° 4π45
0.2923717 17° 17π180
0.30901699 18° π10
0.32556815 19° 19π180
0.34202014 20° π9
0.35836795 21° 7π60
0.37460659 22° 11π90
0.39073113 23° 23π180
0.40673664 24° 2π15
0.42261826 25° 5π36
0.43837115 26° 13π90
0.4539905 27° 3π20
0.46947156 28° 7π45
0.48480962 29° 29π180
0.5 30° π6
0.51503807 31° 31π180
0.52991926 32° 8π45
0.54463904 33° 11π60
0.5591929 34° 17π90
0.57357644 35° 7π36
0.58778525 36° π5
0.60181502 37° 37π180
0.61566148 38° 19π90
0.62932039 39° 13π60
0.64278761 40° 2π9
0.65605903 41° 41π180
0.66913061 42° 7π30
0.68199836 43° 43π180
0.69465837 44° 11π45
0.70710678 45° π4
0.7193398 46° 23π90
0.7313537 47° 47π180
0.74314483 48° 4π15
0.75470958 49° 49π180
0.76604444 50° 5π18
0.77714596 51° 17π60
0.78801075 52° 13π45
0.79863551 53° 53π180
0.80901699 54° 3π10
0.81915204 55° 11π36
0.82903757 56° 14π45
0.83867057 57° 19π60
0.8480481 58° 29π90
0.8571673 59° 59π180
0.8660254 60° π3
0.87461971 61° 61π180
0.88294759 62° 31π90
0.89100652 63° 7π20
0.89879405 64° 16π45
0.90630779 65° 13π36
0.91354546 66° 11π30
0.92050485 67° 67π180
0.92718385 68° 17π45
0.93358043 69° 23π60
0.93969262 70° 7π18
0.94551858 71° 71π180
0.95105652 72° 2π5
0.95630476 73° 73π180
0.9612617 74° 37π90
0.96592583 75° 5π12
0.97029573 76° 19π45
0.97437006 77° 77π180
0.9781476 78° 13π30
0.98162718 79° 79π180
0.98480775 80° 4π9
0.98768834 81° 9π20
0.99026807 82° 41π90
0.99254615 83° 83π180
0.9945219 84° 7π15
0.9961947 85° 17π36
0.99756405 86° 43π90
0.99862953 87° 29π60
0.99939083 88° 22π45
0.9998477 89° 89π180
1 90° π2

How to use this inverse sine calculator

Arcsine Calculator is so easy to use, even for kids. Enter the sine value, and then click the Calculate button to find the arcsine value, which is the angle. By default, the degrees and radians of the angle will be displayed. Note that the range of input values is between -1 and 1. Decimals and fractions are also supported.

FAQS

  • Q: What is inverse sine used for?
    A: Arcsine is used to find the corresponding angle based on the sine value.
  • Q: Are arcsin and sin^-1 the same?
    A: Yes, they are the same, both represent arcsine.
  • Q: Are arcsin and csc the same?
    A: No. They are different, arcsin is the inverse function of sine, and csc is the reciprocal of sine.
  • Q: What is the output of the arcsine calculator?
    A: The output of the arcsine calculator is an angle, which can be in degrees or radians.
  • Q: What is the derivative of arcsine?
    A: The derivative of arcsine is 1√(1-x2)

    (arcsin(x))’ = 1√(1-x2)

Conclusion

In summary, arcsine is a very important inverse trigonometric function. When the sine value is known, the angle value can be easily calculated by the arcsine function. If you don’t know how to calculate it, just use our arcsine calculator. One second to input, one second to get an answer.

Latest Calculators

Point-Slope Form Calculator

Standard Form to Slope-Intercept Form Calculator

Slope Intercept Form Calculator

Slope Calculator: Calculate Slope, X-Intercept, Y-Intercept

Reciprocal of Complex Number Calculator

Conjugate Complex Number Calculator

Modulus of Complex Number Calculator

Complex Number Calculator

Profit Percentage Calculator: Calculate Your Profitability Easily

Attendance and Absence Percentage Calculator

Trigonometric Functions

Arccsc Calculator – Find the Exact Value of Inverse Cosecant

Arcsec Calculator – Find the Exact Value of Inverse Secant

Arccot Calculator – Find the Exact Value of Inverse Cotangent

Arctan Calculator – Find the Exact Value of Inverse Tangent

Inverse Cosine Calculator – Find The Exact Value of Arccos

Inverse Trigonometric Functions Calculator

Trigonometric Functions Conversion Calculator

Trig Calculator – Find 6 Trigonometric Functions by Angles or Sides

Cosecant Calculator

0 like
  • 0
  • 0
  • 0
  • 0
CopyRight © MathBz.com All rights reserved.
  • Home
  • About Us
  • Contact Us
  • Privacy Policy and Cookies
Back to top of page