Arcsine Calculator

Enter a sine value to quickly calculate the corresponding angle in degrees and radians.

Calculate arcsin(x)

Degrees

Radians

What is the Arcsine Function?

The arcsine function, also known as the inverse sine function, is the reverse of the sine function. It is denoted as \(\arcsin(x)\) or \(\sin^{-1}(x)\) and is used to calculate the angle that corresponds to a given sine value. For the sine function \(y = \sin(\theta)\), the arcsine function is defined as: \( \theta = \arcsin(x) \) Here: \(-1 \leq x \leq 1\), \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\). The range of the arcsine function is \([- \frac{\pi}{2}, \frac{\pi}{2}]\), ensuring that the function is unique and invertible.

Examples

Example 1: Find the angle for \(\sin(\theta) = 0.5\)

Solution:

\( \theta = \arcsin(0.5) = \frac{\pi}{6} \approx 0.5236 \, \text{radians} \)

The angle corresponding to a sine value of 0.5 is \(\frac{\pi}{6}\) or 30°.

Example 2: Find the angle for \(\sin(\theta) = 1\)

Solution:

\( \theta = \arcsin(1) = \frac{\pi}{2} \approx 1.5708 \, \text{radians} \)

The angle corresponding to a sine value of 1 is \(\frac{\pi}{2}\) or 90°.

Graph of the Arcsine Function

arcsine graph

The graph of the arcsine function is a smooth, monotonic curve that connects points within its defined domain and range. Below are its key features:

  • Domain: \([-1, 1]\)
  • Range: \([- \frac{\pi}{2}, \frac{\pi}{2}]\)
  • Monotonicity: The arcsine function is strictly increasing throughout its domain.
  • Odd Function: \(\arcsin(-x) = -\arcsin(x)\), indicating symmetry about the origin.

Arcsine Conversion Table

Sine Value Degrees Radians
-1-90°\(\frac{-\pi}{2}\)
-0.9998477-89°\(\frac{-89\pi}{180}\)
-0.99939083-88°\(\frac{-22\pi}{45}\)
-0.99862953-87°\(\frac{-29\pi}{60}\)
-0.99756405-86°\(\frac{-43\pi}{90}\)
-0.9961947-85°\(\frac{-17\pi}{36}\)
-0.9945219-84°\(\frac{-7\pi}{15}\)
-0.99254615-83°\(\frac{-83\pi}{180}\)
-0.99026807-82°\(\frac{-41\pi}{90}\)
-0.98768834-81°\(\frac{-9\pi}{20}\)
-0.98480775-80°\(\frac{-4\pi}{9}\)
-0.98162718-79°\(\frac{-79\pi}{180}\)
-0.9781476-78°\(\frac{-13\pi}{30}\)
-0.97437006-77°\(\frac{-77\pi}{180}\)
-0.97029573-76°\(\frac{-19\pi}{45}\)
-0.96592583-75°\(\frac{-5\pi}{12}\)
-0.9612617-74°\(\frac{-37\pi}{90}\)
-0.95630476-73°\(\frac{-73\pi}{180}\)
-0.95105652-72°\(\frac{-2\pi}{5}\)
-0.94551858-71°\(\frac{-71\pi}{180}\)
-0.93969262-70°\(\frac{-7\pi}{18}\)
-0.93358043-69°\(\frac{-23\pi}{60}\)
-0.92718385-68°\(\frac{-17\pi}{45}\)
-0.92050485-67°\(\frac{-67\pi}{180}\)
-0.91354546-66°\(\frac{-11\pi}{30}\)
-0.90630779-65°\(\frac{-13\pi}{36}\)
-0.89879405-64°\(\frac{-16\pi}{45}\)
-0.89100652-63°\(\frac{-7\pi}{20}\)
-0.88294759-62°\(\frac{-31\pi}{90}\)
-0.87461971-61°\(\frac{-61\pi}{180}\)
-0.8660254-60°\(\frac{-\pi}{3}\)
-0.8571673-59°\(\frac{-59\pi}{180}\)
-0.8480481-58°\(\frac{-29\pi}{90}\)
-0.83867057-57°\(\frac{-19\pi}{60}\)
-0.82903757-56°\(\frac{-14\pi}{45}\)
-0.81915204-55°\(\frac{-11\pi}{36}\)
-0.80901699-54°\(\frac{-3\pi}{10}\)
-0.79863551-53°\(\frac{-53\pi}{180}\)
-0.78801075-52°\(\frac{-13\pi}{45}\)
-0.77714596-51°\(\frac{-17\pi}{60}\)
-0.76604444-50°\(\frac{-5\pi}{18}\)
-0.75470958-49°\(\frac{-49\pi}{180}\)
-0.74314483-48°\(\frac{-4\pi}{15}\)
-0.7313537-47°\(\frac{-47\pi}{180}\)
-0.7193398-46°\(\frac{-23\pi}{90}\)
-0.70710678-45°\(\frac{-\pi}{4}\)
-0.69465837-44°\(\frac{-11\pi}{45}\)
-0.68199836-43°\(\frac{-43\pi}{180}\)
-0.66913061-42°\(\frac{-7\pi}{30}\)
-0.65605903-41°\(\frac{-41\pi}{180}\)
-0.64278761-40°\(\frac{-2\pi}{9}\)
-0.62932039-39°\(\frac{-13\pi}{60}\)
-0.61566148-38°\(\frac{-19\pi}{90}\)
-0.60181502-37°\(\frac{-37\pi}{180}\)
-0.58778525-36°\(\frac{-\pi}{5}\)
-0.57357644-35°\(\frac{-7\pi}{36}\)
-0.5591929-34°\(\frac{-17\pi}{90}\)
-0.54463904-33°\(\frac{-11\pi}{60}\)
-0.52991926-32°\(\frac{-8\pi}{45}\)
-0.51503807-31°\(\frac{-31\pi}{180}\)
-0.5-30°\(\frac{-\pi}{6}\)
-0.48480962-29°\(\frac{-29\pi}{180}\)
-0.46947156-28°\(\frac{-7\pi}{45}\)
-0.4539905-27°\(\frac{-3\pi}{20}\)
-0.43837115-26°\(\frac{-13\pi}{90}\)
-0.42261826-25°\(\frac{-5\pi}{36}\)
-0.40673664-24°\(\frac{-2\pi}{15}\)
-0.39073113-23°\(\frac{-23\pi}{180}\)
-0.37460659-22°\(\frac{-11\pi}{90}\)
-0.35836795-21°\(\frac{-7\pi}{60}\)
-0.34202014-20°\(\frac{-\pi}{9}\)
-0.32556815-19°\(\frac{-19\pi}{180}\)
-0.30901699-18°\(\frac{-\pi}{10}\)
-0.2923717-17°\(\frac{-17\pi}{180}\)
-0.27563736-16°\(\frac{-4\pi}{45}\)
-0.25881905-15°\(\frac{-\pi}{12}\)
-0.2419219-14°\(\frac{-7\pi}{90}\)
-0.22495105-13°\(\frac{-13\pi}{180}\)
-0.20791169-12°\(\frac{-\pi}{15}\)
-0.190809-11°\(\frac{-11\pi}{180}\)
-0.17364818-10°\(\frac{-\pi}{18}\)
-0.15643447-9°\(\frac{-\pi}{20}\)
-0.1391731-8°\(\frac{-2\pi}{45}\)
-0.12186934-7°\(\frac{-7\pi}{180}\)
-0.10452846-6°\(\frac{-\pi}{30}\)
-0.08715574-5°\(\frac{-\pi}{36}\)
-0.06975647-4°\(\frac{-\pi}{45}\)
-0.05233596-3°\(\frac{-\pi}{60}\)
-0.0348995-2°\(\frac{-\pi}{90}\)
-0.01745241-1°\(\frac{-\pi}{180}\)
00
0.01745241\(\frac{\pi}{180}\)
0.0348995\(\frac{\pi}{90}\)
0.05233596\(\frac{\pi}{60}\)
0.06975647\(\frac{\pi}{45}\)
0.08715574\(\frac{\pi}{36}\)
0.10452846\(\frac{\pi}{30}\)
0.12186934\(\frac{7\pi}{180}\)
0.1391731\(\frac{2\pi}{45}\)
0.15643447\(\frac{\pi}{20}\)
0.1736481810°\(\frac{\pi}{18}\)
0.19080911°\(\frac{11\pi}{180}\)
0.2079116912°\(\frac{\pi}{15}\)
0.2249510513°\(\frac{13\pi}{180}\)
0.241921914°\(\frac{7\pi}{90}\)
0.2588190515°\(\frac{\pi}{12}\)
0.2756373616°\(\frac{4\pi}{45}\)
0.292371717°\(\frac{17\pi}{180}\)
0.3090169918°\(\frac{\pi}{10}\)
0.3255681519°\(\frac{19\pi}{180}\)
0.3420201420°\(\frac{\pi}{9}\)
0.3583679521°\(\frac{7\pi}{60}\)
0.3746065922°\(\frac{11\pi}{90}\)
0.3907311323°\(\frac{23\pi}{180}\)
0.4067366424°\(\frac{2\pi}{15}\)
0.4226182625°\(\frac{5\pi}{36}\)
0.4383711526°\(\frac{13\pi}{90}\)
0.453990527°\(\frac{3\pi}{20}\)
0.4694715628°\(\frac{7\pi}{45}\)
0.4848096229°\(\frac{29\pi}{180}\)
0.530°\(\frac{\pi}{6}\)
0.5150380731°\(\frac{31\pi}{180}\)
0.5299192632°\(\frac{8\pi}{45}\)
0.5446390433°\(\frac{11\pi}{60}\)
0.559192934°\(\frac{17\pi}{90}\)
0.5735764435°\(\frac{7\pi}{36}\)
0.5877852536°\(\frac{\pi}{5}\)
0.6018150237°\(\frac{37\pi}{180}\)
0.6156614838°\(\frac{19\pi}{90}\)
0.6293203939°\(\frac{13\pi}{60}\)
0.6427876140°\(\frac{2\pi}{9}\)
0.6560590341°\(\frac{41\pi}{180}\)
0.6691306142°\(\frac{7\pi}{30}\)
0.6819983643°\(\frac{43\pi}{180}\)
0.6946583744°\(\frac{11\pi}{45}\)
0.7071067845°\(\frac{\pi}{4}\)
0.719339846°\(\frac{23\pi}{90}\)
0.731353747°\(\frac{47\pi}{180}\)
0.7431448348°\(\frac{4\pi}{15}\)
0.7547095849°\(\frac{49\pi}{180}\)
0.7660444450°\(\frac{5\pi}{18}\)
0.7771459651°\(\frac{17\pi}{60}\)
0.7880107552°\(\frac{13\pi}{45}\)
0.7986355153°\(\frac{53\pi}{180}\)
0.8090169954°\(\frac{3\pi}{10}\)
0.8191520455°\(\frac{11\pi}{36}\)
0.8290375756°\(\frac{14\pi}{45}\)
0.8386705757°\(\frac{19\pi}{60}\)
0.848048158°\(\frac{29\pi}{90}\)
0.857167359°\(\frac{59\pi}{180}\)
0.866025460°\(\frac{\pi}{3}\)
0.8746197161°\(\frac{61\pi}{180}\)
0.8829475962°\(\frac{31\pi}{90}\)
0.8910065263°\(\frac{7\pi}{20}\)
0.8987940564°\(\frac{16\pi}{45}\)
0.9063077965°\(\frac{13\pi}{36}\)
0.9135454666°\(\frac{11\pi}{30}\)
0.9205048567°\(\frac{67\pi}{180}\)
0.9271838568°\(\frac{17\pi}{45}\)
0.9335804369°\(\frac{23\pi}{60}\)
0.9396926270°\(\frac{7\pi}{18}\)
0.9455185871°\(\frac{71\pi}{180}\)
0.9510565272°\(\frac{2\pi}{5}\)
0.9563047673°\(\frac{73\pi}{180}\)
0.961261774°\(\frac{37\pi}{90}\)
0.9659258375°\(\frac{5\pi}{12}\)
0.9702957376°\(\frac{19\pi}{45}\)
0.9743700677°\(\frac{77\pi}{180}\)
0.978147678°\(\frac{13\pi}{30}\)
0.9816271879°\(\frac{79\pi}{180}\)
0.9848077580°\(\frac{4\pi}{9}\)
0.9876883481°\(\frac{9\pi}{20}\)
0.9902680782°\(\frac{41\pi}{90}\)
0.9925461583°\(\frac{83\pi}{180}\)
0.994521984°\(\frac{7\pi}{15}\)
0.996194785°\(\frac{17\pi}{36}\)
0.9975640586°\(\frac{43\pi}{90}\)
0.9986295387°\(\frac{29\pi}{60}\)
0.9993908388°\(\frac{22\pi}{45}\)
0.999847789°\(\frac{89\pi}{180}\)
190°\(\frac{\pi}{2}\)