MathBz MathBz
  • Home
  • Calculators
  • Checkers
  • Converters
  • Symbols
Search Site
Type and hit enter to search

Inverse Cosine Calculator – Find The Exact Value of Arccos

The Inverse Cosine Calculator is a handy online tool for finding the exact value of the arccos.

Inverse Cosine Calculator

Calculate Reset

What is arccos?

Arccosine is the inverse function of cosine and is used to find the measure of angles in a right triangle based on the ratio of the adjacent side to the hypotenuse. Arccosine is an inverse trigonometric function. The mathematical symbol for arccosine is arccos, often denoted as cos-1.

The arccosine formula is

θ = arccos(oppositehypotenuse)

Arccos graph and properties

Since the range of cosine is between -1 and 1, the domain of arccosine is also defined between -1 and 1. To avoid the periodicity of cosine (multiple angles correspond to one value), it is impossible to have an inverse function. Therefore, the value range of arccosine is specified between 0 and π. The graph of the arccosine is as follows:

Arccosine graph

Arccosine graph

  1. Domain – The domain of arccosine is between -1 and 1.
  2. Range – The range of arccosine is 0 to π.
  3. Monotonicity – In the domain, the arccosine monotonically decreasing
  4. Neither odd nor even function – Because arccos(x) ≠ arccos(-x), arccosine is not an even function. At the same time, arccos(x) ≠ -arccos(-x), so arccosine is not an odd function.

How to calculate arccos?

There are two ways to calculate the arccosine. One is the traditional method. Use the arccosine table to find the correspondence between the cosine value and the angle. The other is an easy way to use the arccosine calculator to calculate the value of the arccosine. Clearly, an arccosine calculator has advantages over an arccosine table. The arccosine calculator can calculate the answer in milliseconds. If you want to use the traditional method, please refer to our arccosine table below.

arccos(x) Degrees Radians
1 0° 0
0.9998477 1° π180
0.99939083 2° π90
0.99862953 3° π60
0.99756405 4° π45
0.9961947 5° π36
0.9945219 6° π30
0.99254615 7° 7π180
0.99026807 8° 2π45
0.98768834 9° π20
0.98480775 10° π18
0.98162718 11° 11π180
0.9781476 12° π15
0.97437006 13° 13π180
0.97029573 14° 7π90
0.96592583 15° π12
0.9612617 16° 4π45
0.95630476 17° 17π180
0.95105652 18° π10
0.94551858 19° 19π180
0.93969262 20° π9
0.93358043 21° 7π60
0.92718385 22° 11π90
0.92050485 23° 23π180
0.91354546 24° 2π15
0.90630779 25° 5π36
0.89879405 26° 13π90
0.89100652 27° 3π20
0.88294759 28° 7π45
0.87461971 29° 29π180
0.8660254 30° π6
0.8571673 31° 31π180
0.8480481 32° 8π45
0.83867057 33° 11π60
0.82903757 34° 17π90
0.81915204 35° 7π36
0.80901699 36° π5
0.79863551 37° 37π180
0.78801075 38° 19π90
0.77714596 39° 13π60
0.76604444 40° 2π9
0.75470958 41° 41π180
0.74314483 42° 7π30
0.7313537 43° 43π180
0.7193398 44° 11π45
0.70710678 45° π4
0.69465837 46° 23π90
0.68199836 47° 47π180
0.66913061 48° 4π15
0.65605903 49° 49π180
0.64278761 50° 5π18
0.62932039 51° 17π60
0.61566148 52° 13π45
0.60181502 53° 53π180
0.58778525 54° 3π10
0.57357644 55° 11π36
0.5591929 56° 14π45
0.54463904 57° 19π60
0.52991926 58° 29π90
0.51503807 59° 59π180
0.5 60° π3
0.48480962 61° 61π180
0.46947156 62° 31π90
0.4539905 63° 7π20
0.43837115 64° 16π45
0.42261826 65° 13π36
0.40673664 66° 11π30
0.39073113 67° 67π180
0.37460659 68° 17π45
0.35836795 69° 23π60
0.34202014 70° 7π18
0.32556815 71° 71π180
0.30901699 72° 2π5
0.2923717 73° 73π180
0.27563736 74° 37π90
0.25881905 75° 5π12
0.2419219 76° 19π45
0.22495105 77° 77π180
0.20791169 78° 13π30
0.190809 79° 79π180
0.17364818 80° 4π9
0.15643447 81° 9π20
0.1391731 82° 41π90
0.12186934 83° 83π180
0.10452846 84° 7π15
0.08715574 85° 17π36
0.06975647 86° 43π90
0.05233596 87° 29π60
0.0348995 88° 22π45
0.01745241 89° 89π180
0 90° π2
-0.01745241 91° 91π180
-0.0348995 92° 23π45
-0.05233596 93° 31π60
-0.06975647 94° 47π90
-0.08715574 95° 19π36
-0.10452846 96° 8π15
-0.12186934 97° 97π180
-0.1391731 98° 49π90
-0.15643447 99° 11π20
-0.17364818 100° 5π9
-0.190809 101° 101π180
-0.20791169 102° 17π30
-0.22495105 103° 103π180
-0.2419219 104° 26π45
-0.25881905 105° 7π12
-0.27563736 106° 53π90
-0.2923717 107° 107π180
-0.30901699 108° 3π5
-0.32556815 109° 109π180
-0.34202014 110° 11π18
-0.35836795 111° 37π60
-0.37460659 112° 28π45
-0.39073113 113° 113π180
-0.40673664 114° 19π30
-0.42261826 115° 23π36
-0.43837115 116° 29π45
-0.4539905 117° 13π20
-0.46947156 118° 59π90
-0.48480962 119° 119π180
-0.5 120° 2π3
-0.51503807 121° 121π180
-0.52991926 122° 61π90
-0.54463904 123° 41π60
-0.5591929 124° 31π45
-0.57357644 125° 25π36
-0.58778525 126° 7π10
-0.60181502 127° 127π180
-0.61566148 128° 32π45
-0.62932039 129° 43π60
-0.64278761 130° 13π18
-0.65605903 131° 131π180
-0.66913061 132° 11π15
-0.68199836 133° 133π180
-0.69465837 134° 67π90
-0.70710678 135° 3π4
-0.7193398 136° 34π45
-0.7313537 137° 137π180
-0.74314483 138° 23π30
-0.75470958 139° 139π180
-0.76604444 140° 7π9
-0.77714596 141° 47π60
-0.78801075 142° 71π90
-0.79863551 143° 143π180
-0.80901699 144° 4π5
-0.81915204 145° 29π36
-0.82903757 146° 73π90
-0.83867057 147° 49π60
-0.8480481 148° 37π45
-0.8571673 149° 149π180
-0.8660254 150° 5π6
-0.87461971 151° 151π180
-0.88294759 152° 38π45
-0.89100652 153° 17π20
-0.89879405 154° 77π90
-0.90630779 155° 31π36
-0.91354546 156° 13π15
-0.92050485 157° 157π180
-0.92718385 158° 79π90
-0.93358043 159° 53π60
-0.93969262 160° 8π9
-0.94551858 161° 161π180
-0.95105652 162° 9π10
-0.95630476 163° 163π180
-0.9612617 164° 41π45
-0.96592583 165° 11π12
-0.97029573 166° 83π90
-0.97437006 167° 167π180
-0.9781476 168° 14π15
-0.98162718 169° 169π180
-0.98480775 170° 17π18
-0.98768834 171° 19π20
-0.99026807 172° 43π45
-0.99254615 173° 173π180
-0.9945219 174° 29π30
-0.9961947 175° 35π36
-0.99756405 176° 44π45
-0.99862953 177° 59π60
-0.99939083 178° 89π90
-0.9998477 179° 179π180
-1 180° π

How to use this inverse cosine calculator

The arc cosine calculator is not difficult to use. Enter the cosine value (between -1 and 1) and click Calculate to find the corresponding angle. Angles are expressed in degrees and radians. If you want to recalculate, please click the Reset button first.

FAQS

  • Q: What is inverse cosine used for?
    A: Inverse cosine is used to find the corresponding angle based on the cosine value.
  • Q: Are arccos and cos^-1 the same?
    A: Yes, they are both expressions of arccosine.
  • Q: Are arccos and secant the same?
    A: No. Arccos is the inverse function of cosine, and secant is the reciprocal of cosine.
  • Q: Is inverse cosine even or odd?
    A: Arccosine is neither odd nor even.
  • Q: Why doesn't inverse cosine work?
    A: The main reason arccosine doesn’t work is that the value is outside its domain. The domain of arccosine is between -1 and 1.
  • Q: What is the arccosine domain and range?
    A: The domain of arccosine is [-1, 1]. The range of arccosine is [0, π].

Conclusion

In a right triangle, the arccosine is considered an angle whose measure is given by the trigonometric ratio of its adjacent side to the hypotenuse. It is one of the 6 inverse trigonometric functions (others are arcsine, arctangent, arccotangent, arcsecant and arccosecant). If you want to calculate the arccosine, please use our arccosine calculator, which is very convenient and fast, and the key is free.

Latest Calculators

Point-Slope Form Calculator

Standard Form to Slope-Intercept Form Calculator

Slope Intercept Form Calculator

Slope Calculator: Calculate Slope, X-Intercept, Y-Intercept

Reciprocal of Complex Number Calculator

Conjugate Complex Number Calculator

Modulus of Complex Number Calculator

Complex Number Calculator

Profit Percentage Calculator: Calculate Your Profitability Easily

Attendance and Absence Percentage Calculator

Trigonometric Functions

Arccsc Calculator – Find the Exact Value of Inverse Cosecant

Arcsec Calculator – Find the Exact Value of Inverse Secant

Arccot Calculator – Find the Exact Value of Inverse Cotangent

Arctan Calculator – Find the Exact Value of Inverse Tangent

Inverse Sine Calculator – Find The Exact Value of Arcsin

Inverse Trigonometric Functions Calculator

Trigonometric Functions Conversion Calculator

Trig Calculator – Find 6 Trigonometric Functions by Angles or Sides

Cosecant Calculator

0 like
  • 0
  • 0
  • 0
  • 0
CopyRight © MathBz.com All rights reserved.
  • Home
  • About Us
  • Contact Us
  • Privacy Policy and Cookies
Back to top of page