The Inverse Cosine Calculator is a handy online tool for finding the exact value of the arccos.
What is arccos?
Arccosine is the inverse function of cosine and is used to find the measure of angles in a right triangle based on the ratio of the adjacent side to the hypotenuse. Arccosine is an inverse trigonometric function. The mathematical symbol for arccosine is arccos, often denoted as cos-1.
The arccosine formula is
θ = arccos(oppositehypotenuse)
Arccos graph and properties
Since the range of cosine is between -1 and 1, the domain of arccosine is also defined between -1 and 1. To avoid the periodicity of cosine (multiple angles correspond to one value), it is impossible to have an inverse function. Therefore, the value range of arccosine is specified between 0 and π. The graph of the arccosine is as follows:
- Domain – The domain of arccosine is between -1 and 1.
- Range – The range of arccosine is 0 to π.
- Monotonicity – In the domain, the arccosine monotonically decreasing
- Neither odd nor even function – Because arccos(x) ≠ arccos(-x), arccosine is not an even function. At the same time, arccos(x) ≠ -arccos(-x), so arccosine is not an odd function.
How to calculate arccos?
There are two ways to calculate the arccosine. One is the traditional method. Use the arccosine table to find the correspondence between the cosine value and the angle. The other is an easy way to use the arccosine calculator to calculate the value of the arccosine. Clearly, an arccosine calculator has advantages over an arccosine table. The arccosine calculator can calculate the answer in milliseconds. If you want to use the traditional method, please refer to our arccosine table below.
arccos(x) | Degrees | Radians |
1 | 0° | 0 |
0.9998477 | 1° | π180 |
0.99939083 | 2° | π90 |
0.99862953 | 3° | π60 |
0.99756405 | 4° | π45 |
0.9961947 | 5° | π36 |
0.9945219 | 6° | π30 |
0.99254615 | 7° | 7π180 |
0.99026807 | 8° | 2π45 |
0.98768834 | 9° | π20 |
0.98480775 | 10° | π18 |
0.98162718 | 11° | 11π180 |
0.9781476 | 12° | π15 |
0.97437006 | 13° | 13π180 |
0.97029573 | 14° | 7π90 |
0.96592583 | 15° | π12 |
0.9612617 | 16° | 4π45 |
0.95630476 | 17° | 17π180 |
0.95105652 | 18° | π10 |
0.94551858 | 19° | 19π180 |
0.93969262 | 20° | π9 |
0.93358043 | 21° | 7π60 |
0.92718385 | 22° | 11π90 |
0.92050485 | 23° | 23π180 |
0.91354546 | 24° | 2π15 |
0.90630779 | 25° | 5π36 |
0.89879405 | 26° | 13π90 |
0.89100652 | 27° | 3π20 |
0.88294759 | 28° | 7π45 |
0.87461971 | 29° | 29π180 |
0.8660254 | 30° | π6 |
0.8571673 | 31° | 31π180 |
0.8480481 | 32° | 8π45 |
0.83867057 | 33° | 11π60 |
0.82903757 | 34° | 17π90 |
0.81915204 | 35° | 7π36 |
0.80901699 | 36° | π5 |
0.79863551 | 37° | 37π180 |
0.78801075 | 38° | 19π90 |
0.77714596 | 39° | 13π60 |
0.76604444 | 40° | 2π9 |
0.75470958 | 41° | 41π180 |
0.74314483 | 42° | 7π30 |
0.7313537 | 43° | 43π180 |
0.7193398 | 44° | 11π45 |
0.70710678 | 45° | π4 |
0.69465837 | 46° | 23π90 |
0.68199836 | 47° | 47π180 |
0.66913061 | 48° | 4π15 |
0.65605903 | 49° | 49π180 |
0.64278761 | 50° | 5π18 |
0.62932039 | 51° | 17π60 |
0.61566148 | 52° | 13π45 |
0.60181502 | 53° | 53π180 |
0.58778525 | 54° | 3π10 |
0.57357644 | 55° | 11π36 |
0.5591929 | 56° | 14π45 |
0.54463904 | 57° | 19π60 |
0.52991926 | 58° | 29π90 |
0.51503807 | 59° | 59π180 |
0.5 | 60° | π3 |
0.48480962 | 61° | 61π180 |
0.46947156 | 62° | 31π90 |
0.4539905 | 63° | 7π20 |
0.43837115 | 64° | 16π45 |
0.42261826 | 65° | 13π36 |
0.40673664 | 66° | 11π30 |
0.39073113 | 67° | 67π180 |
0.37460659 | 68° | 17π45 |
0.35836795 | 69° | 23π60 |
0.34202014 | 70° | 7π18 |
0.32556815 | 71° | 71π180 |
0.30901699 | 72° | 2π5 |
0.2923717 | 73° | 73π180 |
0.27563736 | 74° | 37π90 |
0.25881905 | 75° | 5π12 |
0.2419219 | 76° | 19π45 |
0.22495105 | 77° | 77π180 |
0.20791169 | 78° | 13π30 |
0.190809 | 79° | 79π180 |
0.17364818 | 80° | 4π9 |
0.15643447 | 81° | 9π20 |
0.1391731 | 82° | 41π90 |
0.12186934 | 83° | 83π180 |
0.10452846 | 84° | 7π15 |
0.08715574 | 85° | 17π36 |
0.06975647 | 86° | 43π90 |
0.05233596 | 87° | 29π60 |
0.0348995 | 88° | 22π45 |
0.01745241 | 89° | 89π180 |
0 | 90° | π2 |
-0.01745241 | 91° | 91π180 |
-0.0348995 | 92° | 23π45 |
-0.05233596 | 93° | 31π60 |
-0.06975647 | 94° | 47π90 |
-0.08715574 | 95° | 19π36 |
-0.10452846 | 96° | 8π15 |
-0.12186934 | 97° | 97π180 |
-0.1391731 | 98° | 49π90 |
-0.15643447 | 99° | 11π20 |
-0.17364818 | 100° | 5π9 |
-0.190809 | 101° | 101π180 |
-0.20791169 | 102° | 17π30 |
-0.22495105 | 103° | 103π180 |
-0.2419219 | 104° | 26π45 |
-0.25881905 | 105° | 7π12 |
-0.27563736 | 106° | 53π90 |
-0.2923717 | 107° | 107π180 |
-0.30901699 | 108° | 3π5 |
-0.32556815 | 109° | 109π180 |
-0.34202014 | 110° | 11π18 |
-0.35836795 | 111° | 37π60 |
-0.37460659 | 112° | 28π45 |
-0.39073113 | 113° | 113π180 |
-0.40673664 | 114° | 19π30 |
-0.42261826 | 115° | 23π36 |
-0.43837115 | 116° | 29π45 |
-0.4539905 | 117° | 13π20 |
-0.46947156 | 118° | 59π90 |
-0.48480962 | 119° | 119π180 |
-0.5 | 120° | 2π3 |
-0.51503807 | 121° | 121π180 |
-0.52991926 | 122° | 61π90 |
-0.54463904 | 123° | 41π60 |
-0.5591929 | 124° | 31π45 |
-0.57357644 | 125° | 25π36 |
-0.58778525 | 126° | 7π10 |
-0.60181502 | 127° | 127π180 |
-0.61566148 | 128° | 32π45 |
-0.62932039 | 129° | 43π60 |
-0.64278761 | 130° | 13π18 |
-0.65605903 | 131° | 131π180 |
-0.66913061 | 132° | 11π15 |
-0.68199836 | 133° | 133π180 |
-0.69465837 | 134° | 67π90 |
-0.70710678 | 135° | 3π4 |
-0.7193398 | 136° | 34π45 |
-0.7313537 | 137° | 137π180 |
-0.74314483 | 138° | 23π30 |
-0.75470958 | 139° | 139π180 |
-0.76604444 | 140° | 7π9 |
-0.77714596 | 141° | 47π60 |
-0.78801075 | 142° | 71π90 |
-0.79863551 | 143° | 143π180 |
-0.80901699 | 144° | 4π5 |
-0.81915204 | 145° | 29π36 |
-0.82903757 | 146° | 73π90 |
-0.83867057 | 147° | 49π60 |
-0.8480481 | 148° | 37π45 |
-0.8571673 | 149° | 149π180 |
-0.8660254 | 150° | 5π6 |
-0.87461971 | 151° | 151π180 |
-0.88294759 | 152° | 38π45 |
-0.89100652 | 153° | 17π20 |
-0.89879405 | 154° | 77π90 |
-0.90630779 | 155° | 31π36 |
-0.91354546 | 156° | 13π15 |
-0.92050485 | 157° | 157π180 |
-0.92718385 | 158° | 79π90 |
-0.93358043 | 159° | 53π60 |
-0.93969262 | 160° | 8π9 |
-0.94551858 | 161° | 161π180 |
-0.95105652 | 162° | 9π10 |
-0.95630476 | 163° | 163π180 |
-0.9612617 | 164° | 41π45 |
-0.96592583 | 165° | 11π12 |
-0.97029573 | 166° | 83π90 |
-0.97437006 | 167° | 167π180 |
-0.9781476 | 168° | 14π15 |
-0.98162718 | 169° | 169π180 |
-0.98480775 | 170° | 17π18 |
-0.98768834 | 171° | 19π20 |
-0.99026807 | 172° | 43π45 |
-0.99254615 | 173° | 173π180 |
-0.9945219 | 174° | 29π30 |
-0.9961947 | 175° | 35π36 |
-0.99756405 | 176° | 44π45 |
-0.99862953 | 177° | 59π60 |
-0.99939083 | 178° | 89π90 |
-0.9998477 | 179° | 179π180 |
-1 | 180° | π |
How to use this inverse cosine calculator
The arc cosine calculator is not difficult to use. Enter the cosine value (between -1 and 1) and click Calculate to find the corresponding angle. Angles are expressed in degrees and radians. If you want to recalculate, please click the Reset button first.
FAQS
- Q: What is inverse cosine used for?A: Inverse cosine is used to find the corresponding angle based on the cosine value.
- Q: Are arccos and cos^-1 the same?A: Yes, they are both expressions of arccosine.
- Q: Are arccos and secant the same?
- Q: Is inverse cosine even or odd?A: Arccosine is neither odd nor even.
- Q: Why doesn't inverse cosine work?A: The main reason arccosine doesn’t work is that the value is outside its domain. The domain of arccosine is between -1 and 1.
- Q: What is the arccosine domain and range?A: The domain of arccosine is [-1, 1]. The range of arccosine is [0, π].
Conclusion
In a right triangle, the arccosine is considered an angle whose measure is given by the trigonometric ratio of its adjacent side to the hypotenuse. It is one of the 6 inverse trigonometric functions (others are arcsine, arctangent, arccotangent, arcsecant and arccosecant). If you want to calculate the arccosine, please use our arccosine calculator, which is very convenient and fast, and the key is free.
Latest Calculators
Standard Form to Slope-Intercept Form Calculator
Slope Intercept Form Calculator
Slope Calculator: Calculate Slope, X-Intercept, Y-Intercept
Reciprocal of Complex Number Calculator
Conjugate Complex Number Calculator
Modulus of Complex Number Calculator
Profit Percentage Calculator: Calculate Your Profitability Easily
Attendance and Absence Percentage Calculator
Trigonometric Functions
Arccsc Calculator – Find the Exact Value of Inverse Cosecant
Arcsec Calculator – Find the Exact Value of Inverse Secant
Arccot Calculator – Find the Exact Value of Inverse Cotangent
Arctan Calculator – Find the Exact Value of Inverse Tangent
Inverse Sine Calculator – Find The Exact Value of Arcsin
Inverse Trigonometric Functions Calculator
Trigonometric Functions Conversion Calculator
Trig Calculator – Find 6 Trigonometric Functions by Angles or Sides