Hilbert Number Calculator

Enter a number to check if it is a Hilbert number, or enter a start and end value to generate all Hilbert numbers within the range.

Hilbert Number Check or Generate

What Is a Hilbert Number?

A Hilbert number is a positive integer in the form \(4n + 1\), where \(n\) is a non-negative integer. Examples of Hilbert numbers include: 1, 5, 9, 13, 17, and so on.

How to Determine if a Number Is a Hilbert Number

To check whether a given number \(x\) is a Hilbert number:

  1. Subtract 1 from \(x\).
  2. Check if the result is divisible by 4. If \((x - 1) \mod 4 = 0\), then \(x\) is a Hilbert number. Otherwise, \(x\) is not a Hilbert number.

Examples

Example 1: Check if 141 is a Hilbert number

Solution:

1. Subtract 1 from \(x\):

\(141 - 1 = 140\).

2. Check divisibility by 4:

\(140 \div 4 = 35\), which is an integer.

Result: 141 is a Hilbert number because it satisfies the \(4n + 1\) form.

Example 2: Check if 12 is a Hilbert number

Solution:

1. Subtract 1 from \(x\):

\(12 - 1 = 11\).

2. Check divisibility by 4:

\(11 \div 4 = 2\) remainder \(3\), so 11 is not divisible by 4.

Result: 12 is not a Hilbert number because it does not satisfy the \(4n + 1\) form.

The First 100 Hilbert Numbers

  • 1
  • 5
  • 9
  • 13
  • 17
  • 21
  • 25
  • 29
  • 33
  • 37
  • 41
  • 45
  • 49
  • 53
  • 57
  • 61
  • 65
  • 69
  • 73
  • 77
  • 81
  • 85
  • 89
  • 93
  • 97
  • 101
  • 105
  • 109
  • 113
  • 117
  • 121
  • 125
  • 129
  • 133
  • 137
  • 141
  • 145
  • 149
  • 153
  • 157
  • 161
  • 165
  • 169
  • 173
  • 177
  • 181
  • 185
  • 189
  • 193
  • 197
  • 201
  • 205
  • 209
  • 213
  • 217
  • 221
  • 225
  • 229
  • 233
  • 237
  • 241
  • 245
  • 249
  • 253
  • 257
  • 261
  • 265
  • 269
  • 273
  • 277
  • 281
  • 285
  • 289
  • 293
  • 297
  • 301
  • 305
  • 309
  • 313
  • 317
  • 321
  • 325
  • 329
  • 333
  • 337
  • 341
  • 345
  • 349
  • 353
  • 357
  • 361
  • 365
  • 369
  • 373
  • 377
  • 381
  • 385
  • 389
  • 393
  • 397