Enter a fraction and simplify it to its lowest terms.
A simplified fraction is one where the greatest common divisor (GCD) of the numerator and denominator is 1. In other words, it is a fraction that cannot be reduced further. Simplifying fractions makes calculations easier and more intuitive.
To simplify a fraction, follow these steps:
Solution:
1. Find the GCD:
Factors of 18: 1, 2, 3, 6, 9, 18
Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
GCD of 18 and 24 is 6
2. Divide the numerator and denominator by 6:
\( \frac{18 \div 6}{24 \div 6} = \frac{3}{4} \)
Thus, the simplified form of \(\frac{18}{24}\) is \(\frac{3}{4}\).
Solution:
1. Convert the mixed fraction to an improper fraction:
\( 2\frac{2}{4} = \frac{2 \times 4 + 2}{4} = \frac{10}{4} \)
2. Find the GCD of 4 and 10:
GCD(4, 10) = 2
3. Divide the numerator and denominator by 2:
\( \frac{10 \div 2}{4 \div 2} = \frac{5}{2} \)
So, the simplified form of \(2\frac{2}{4}\) is \(2\frac{1}{2}\).