Coversine Calculator

Input an angle in degrees or radians to calculate its coversine value.

Calculate coversin(θ)

Result

What Is the Coversine Function?

The coversine function (\( \text{coversin}(\theta) \) or \( \text{versin}(\pi/2 - \theta) \)) is a lesser-known trigonometric function. It represents the complement of the sine function and can be defined as: \( \text{coversin}(\theta) = 1 - \sin(\theta) \) This formula shows that coversine is the shifted version of the sine function, useful for expressing the deviation of sine from unity.

For \( \theta = 30^\circ \): \( \text{coversin}(30^\circ) = 1 - \sin(30^\circ) = 1 - 0.5 = 0.5 \)

Graph of the Coversine Func

coversine graph

The coversine function forms a shifted sine wave with distinct characteristics:

  • Periodicity: The coversine function has a period of \( 2\pi \).
  • Domain: Defined for all real numbers \( \mathbb{R} \).
  • Range: \( \text{coversin}(\theta) \in [0, 2] \).
  • Amplitude: Maximum value is \( 2 \), and minimum value is \( 0 \).
  • Wave Characteristics: Reaches a minimum value of \( 0 \) when \( \sin(\theta) = 1 \). Reaches a maximum value of \( 2 \) when \( \sin(\theta) = -1 \).

Coversine Conversion Table

Degree Radian Coversine Value
01
\(\frac{\pi}{36}\)0.91284426
10°\(\frac{\pi}{18}\)0.82635182
15°\(\frac{\pi}{12}\)0.74118095
20°\(\frac{\pi}{9}\)0.65797986
25°\(\frac{5\pi}{36}\)0.57738174
30°\(\frac{\pi}{6}\)0.5
35°\(\frac{7\pi}{36}\)0.42642356
40°\(\frac{2\pi}{9}\)0.35721239
45°\(\frac{\pi}{4}\)0.29289322
50°\(\frac{5\pi}{18}\)0.23395556
55°\(\frac{11\pi}{36}\)0.18084796
60°\(\frac{\pi}{3}\)0.1339746
65°\(\frac{13\pi}{36}\)0.09369221
70°\(\frac{7\pi}{18}\)0.06030738
75°\(\frac{5\pi}{12}\)0.03407417
80°\(\frac{4\pi}{9}\)0.01519225
85°\(\frac{17\pi}{36}\)0.0038053
90°\(\frac{\pi}{2}\)0
95°\(\frac{19\pi}{36}\)0.0038053
100°\(\frac{5\pi}{9}\)0.01519225
105°\(\frac{7\pi}{12}\)0.03407417
110°\(\frac{11\pi}{18}\)0.06030738
115°\(\frac{23\pi}{36}\)0.09369221
120°\(\frac{2\pi}{3}\)0.1339746
125°\(\frac{25\pi}{36}\)0.18084796
130°\(\frac{13\pi}{18}\)0.23395556
135°\(\frac{3\pi}{4}\)0.29289322
140°\(\frac{7\pi}{9}\)0.35721239
145°\(\frac{29\pi}{36}\)0.42642356
150°\(\frac{5\pi}{6}\)0.5
155°\(\frac{31\pi}{36}\)0.57738174
160°\(\frac{8\pi}{9}\)0.65797986
165°\(\frac{11\pi}{12}\)0.74118095
170°\(\frac{17\pi}{18}\)0.82635182
175°\(\frac{35\pi}{36}\)0.91284426
180°π1
185°\(\frac{37\pi}{36}\)1.08715574
190°\(\frac{19\pi}{18}\)1.17364818
195°\(\frac{13\pi}{12}\)1.25881905
200°\(\frac{10\pi}{9}\)1.34202014
205°\(\frac{41\pi}{36}\)1.42261826
210°\(\frac{7\pi}{6}\)1.5
215°\(\frac{43\pi}{36}\)1.57357644
220°\(\frac{11\pi}{9}\)1.64278761
225°\(\frac{5\pi}{4}\)1.70710678
230°\(\frac{23\pi}{18}\)1.76604444
235°\(\frac{47\pi}{36}\)1.81915204
240°\(\frac{4\pi}{3}\)1.8660254
245°\(\frac{49\pi}{36}\)1.90630779
250°\(\frac{25\pi}{18}\)1.93969262
255°\(\frac{17\pi}{12}\)1.96592583
260°\(\frac{13\pi}{9}\)1.98480775
265°\(\frac{53\pi}{36}\)1.9961947
270°\(\frac{3\pi}{2}\)2
275°\(\frac{55\pi}{36}\)1.9961947
280°\(\frac{14\pi}{9}\)1.98480775
285°\(\frac{19\pi}{12}\)1.96592583
290°\(\frac{29\pi}{18}\)1.93969262
295°\(\frac{59\pi}{36}\)1.90630779
300°\(\frac{5\pi}{3}\)1.8660254
305°\(\frac{61\pi}{36}\)1.81915204
310°\(\frac{31\pi}{18}\)1.76604444
315°\(\frac{7\pi}{4}\)1.70710678
320°\(\frac{16\pi}{9}\)1.64278761
325°\(\frac{65\pi}{36}\)1.57357644
330°\(\frac{11\pi}{6}\)1.5
335°\(\frac{67\pi}{36}\)1.42261826
340°\(\frac{17\pi}{9}\)1.34202014
345°\(\frac{23\pi}{12}\)1.25881905
350°\(\frac{35\pi}{18}\)1.17364818
355°\(\frac{71\pi}{36}\)1.08715574
360°1