Cotangent Calculator

Input an angle or radian to calculate its corresponding cotangent value.

Calculate cot(θ)

Result

Definition and Formula of Cotangent

The cotangent function is a fundamental trigonometric function, often denoted as \(\cot(\theta)\), where \(\theta\) represents an angle, typically measured in radians.

right triangle

In a right triangle, the cotangent of an angle \(\theta\) is defined as the ratio of the adjacent side to the opposite side: \( \cot(\theta) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{b}{a} \) This means the cotangent represents the ratio of the horizontal to the vertical component of an angle.

On the unit circle, the cotangent is defined as the ratio of the \(x\)-coordinate to the \(y\)-coordinate of the point corresponding to angle \(\theta\): \( \cot(\theta) = \frac{x}{y} \) Here, \(x\) and \(y\) are the coordinates of the point on the unit circle.

Examples

Example 1: Calculating Cotangent in a Right Triangle

A right triangle has an acute angle \(\theta = 45^\circ\). The lengths of the opposite and adjacent sides are both 6. Find the cotangent value of this angle.

Solution:

\(\cot(45^\circ) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{6}{6} = 1\)

Thus, the cotangent of \(45^\circ\) is 1.

Example 2: Real-World Application of Cotangent

You are observing a lighthouse that is 50 meters tall, and you are standing 80 meters away from its base. Calculate the angle \(\theta\) between you and the lighthouse.

Solution:

\(\cot(\theta) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{80}{50} = 1.6\)

Using the arccotangent function (\(\text{arccot}\)):

\(\theta = \text{arccot}(1.6) \approx 32^\circ\)

Thus, the angle \(\theta\) is approximately \(32^\circ\).

Cotangent Graph and Properties

cotangent graph

The graph of the cotangent function displays periodic oscillations with vertical asymptotes in each period. Key characteristics include:

  • Periodicity: The cotangent function has a period of \(\pi\) (180°), meaning it repeats every \(\pi\) radians.
  • Monotonicity: Within each period, cotangent decreases monotonically.
  • Even Function: \(\cot(-\theta) = \cot(\theta)\), indicating symmetry about the \(y\)-axis.
  • Amplitude: Cotangent has no amplitude because its range extends from \(-\infty\) to \(\infty\).
  • Vertical Asymptotes: Vertical asymptotes occur at \(\theta = n\pi\) (where \(n\) is an integer).
  • Domain and Range: The domain of the cotangent function is all real angles except multiples of \(\pi\), and the range is \(\mathbb{R}\) (all real numbers).

Cotangent in Different Quadrants

The behavior of the cotangent function across quadrants is as follows:

Quadrant Degrees Radians Sign Range Monotonicity
1st Quadrant\(0^\circ\) - \(90^\circ\)\(0\) - \(\frac{\pi}{2}\)Positive\((\infty, 0)\)Decreasing
2nd Quadrant\(90^\circ\) - \(180^\circ\)\(\frac{\pi}{2}\) - \(\pi\)Negative\((0, -\infty)\)Decreasing
3rd Quadrant\(180^\circ\) - \(270^\circ\)\(\pi\) - \(\frac{3\pi}{2}\)Positive\((\infty, 0)\)Decreasing
4th Quadrant\(270^\circ\) - \(360^\circ\)\(\frac{3\pi}{2}\) - \(2\pi\)Negative\((0, -\infty)\)Decreasing

Additional Cotangent Calculations

1. Reciprocal of Cotangent (Tangent Function)

The reciprocal of the cotangent function is the tangent function: \( \frac{1}{\cot(\theta)} = \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} \) Cotangent is undefined when \(\tan(\theta) = 0\).

2. Derivative of Cotangent

The derivative of cotangent is negative secant squared: \( \frac{d}{d\theta} \cot(\theta) = -\sec^2(\theta) \)

3. Integral of Cotangent

The integral of the cotangent function is: \( \int \cot(\theta) \, d\theta = \ln|\sin(\theta)| + C \)

4. Arccotangent (Inverse Cotangent)

The arccotangent function (\(\text{arccot}(x)\)) calculates the angle corresponding to a given cotangent value: \( \theta = \text{arccot}(x) \)

Common Cotangent Values Table

Degree Radian Cotangent Value
\(\frac{\pi}{36}\)11.4300523
10°\(\frac{\pi}{18}\)5.67128182
15°\(\frac{\pi}{12}\)3.73205081
20°\(\frac{\pi}{9}\)2.74747742
25°\(\frac{5\pi}{36}\)2.14450692
30°\(\frac{\pi}{6}\)1.73205081
35°\(\frac{7\pi}{36}\)1.42814801
40°\(\frac{2\pi}{9}\)1.19175359
45°\(\frac{\pi}{4}\)1
50°\(\frac{5\pi}{18}\)0.83909963
55°\(\frac{11\pi}{36}\)0.70020754
60°\(\frac{\pi}{3}\)0.57735027
65°\(\frac{13\pi}{36}\)0.46630766
70°\(\frac{7\pi}{18}\)0.36397023
75°\(\frac{5\pi}{12}\)0.26794919
80°\(\frac{4\pi}{9}\)0.17632698
85°\(\frac{17\pi}{36}\)0.08748866
90°\(\frac{\pi}{2}\)0
95°\(\frac{19\pi}{36}\)-0.08748866
100°\(\frac{5\pi}{9}\)-0.17632698
105°\(\frac{7\pi}{12}\)-0.26794919
110°\(\frac{11\pi}{18}\)-0.36397023
115°\(\frac{23\pi}{36}\)-0.46630766
120°\(\frac{2\pi}{3}\)-0.57735027
125°\(\frac{25\pi}{36}\)-0.70020754
130°\(\frac{13\pi}{18}\)-0.83909963
135°\(\frac{3\pi}{4}\)-1
140°\(\frac{7\pi}{9}\)-1.19175359
145°\(\frac{29\pi}{36}\)-1.42814801
150°\(\frac{5\pi}{6}\)-1.73205081
155°\(\frac{31\pi}{36}\)-2.14450692
160°\(\frac{8\pi}{9}\)-2.74747742
165°\(\frac{11\pi}{12}\)-3.73205081
170°\(\frac{17\pi}{18}\)-5.67128182
175°\(\frac{35\pi}{36}\)-11.4300523
185°\(\frac{37\pi}{36}\)11.4300523
190°\(\frac{19\pi}{18}\)5.67128182
195°\(\frac{13\pi}{12}\)3.73205081
200°\(\frac{10\pi}{9}\)2.74747742
205°\(\frac{41\pi}{36}\)2.14450692
210°\(\frac{7\pi}{6}\)1.73205081
215°\(\frac{43\pi}{36}\)1.42814801
220°\(\frac{11\pi}{9}\)1.19175359
225°\(\frac{5\pi}{4}\)1
230°\(\frac{23\pi}{18}\)0.83909963
235°\(\frac{47\pi}{36}\)0.70020754
240°\(\frac{4\pi}{3}\)0.57735027
245°\(\frac{49\pi}{36}\)0.46630766
250°\(\frac{25\pi}{18}\)0.36397023
255°\(\frac{17\pi}{12}\)0.26794919
260°\(\frac{13\pi}{9}\)0.17632698
265°\(\frac{53\pi}{36}\)0.08748866
270°\(\frac{3\pi}{2}\)0
275°\(\frac{55\pi}{36}\)-0.08748866
280°\(\frac{14\pi}{9}\)-0.17632698
285°\(\frac{19\pi}{12}\)-0.26794919
290°\(\frac{29\pi}{18}\)-0.36397023
295°\(\frac{59\pi}{36}\)-0.46630766
300°\(\frac{5\pi}{3}\)-0.57735027
305°\(\frac{61\pi}{36}\)-0.70020754
310°\(\frac{31\pi}{18}\)-0.83909963
315°\(\frac{7\pi}{4}\)-1
320°\(\frac{16\pi}{9}\)-1.19175359
325°\(\frac{65\pi}{36}\)-1.42814801
330°\(\frac{11\pi}{6}\)-1.73205081
335°\(\frac{67\pi}{36}\)-2.14450692
340°\(\frac{17\pi}{9}\)-2.74747742
345°\(\frac{23\pi}{12}\)-3.73205081
350°\(\frac{35\pi}{18}\)-5.67128182
355°\(\frac{71\pi}{36}\)-11.4300523