Input an angle or radian to calculate its corresponding cotangent value.
The cotangent function is a fundamental trigonometric function, often denoted as \(\cot(\theta)\), where \(\theta\) represents an angle, typically measured in radians.
In a right triangle, the cotangent of an angle \(\theta\) is defined as the ratio of the adjacent side to the opposite side: \( \cot(\theta) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{b}{a} \) This means the cotangent represents the ratio of the horizontal to the vertical component of an angle.
On the unit circle, the cotangent is defined as the ratio of the \(x\)-coordinate to the \(y\)-coordinate of the point corresponding to angle \(\theta\): \( \cot(\theta) = \frac{x}{y} \) Here, \(x\) and \(y\) are the coordinates of the point on the unit circle.
A right triangle has an acute angle \(\theta = 45^\circ\). The lengths of the opposite and adjacent sides are both 6. Find the cotangent value of this angle.
Solution:
\(\cot(45^\circ) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{6}{6} = 1\)
Thus, the cotangent of \(45^\circ\) is 1.
You are observing a lighthouse that is 50 meters tall, and you are standing 80 meters away from its base. Calculate the angle \(\theta\) between you and the lighthouse.
Solution:
\(\cot(\theta) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{80}{50} = 1.6\)
Using the arccotangent function (\(\text{arccot}\)):
\(\theta = \text{arccot}(1.6) \approx 32^\circ\)
Thus, the angle \(\theta\) is approximately \(32^\circ\).
The graph of the cotangent function displays periodic oscillations with vertical asymptotes in each period. Key characteristics include:
The behavior of the cotangent function across quadrants is as follows:
Quadrant | Degrees | Radians | Sign | Range | Monotonicity |
---|---|---|---|---|---|
1st Quadrant | \(0^\circ\) - \(90^\circ\) | \(0\) - \(\frac{\pi}{2}\) | Positive | \((\infty, 0)\) | Decreasing |
2nd Quadrant | \(90^\circ\) - \(180^\circ\) | \(\frac{\pi}{2}\) - \(\pi\) | Negative | \((0, -\infty)\) | Decreasing |
3rd Quadrant | \(180^\circ\) - \(270^\circ\) | \(\pi\) - \(\frac{3\pi}{2}\) | Positive | \((\infty, 0)\) | Decreasing |
4th Quadrant | \(270^\circ\) - \(360^\circ\) | \(\frac{3\pi}{2}\) - \(2\pi\) | Negative | \((0, -\infty)\) | Decreasing |
The reciprocal of the cotangent function is the tangent function: \( \frac{1}{\cot(\theta)} = \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} \) Cotangent is undefined when \(\tan(\theta) = 0\).
The derivative of cotangent is negative secant squared: \( \frac{d}{d\theta} \cot(\theta) = -\sec^2(\theta) \)
The integral of the cotangent function is: \( \int \cot(\theta) \, d\theta = \ln|\sin(\theta)| + C \)
The arccotangent function (\(\text{arccot}(x)\)) calculates the angle corresponding to a given cotangent value: \( \theta = \text{arccot}(x) \)
Degree | Radian | Cotangent Value |
---|---|---|
5° | \(\frac{\pi}{36}\) | 11.4300523 |
10° | \(\frac{\pi}{18}\) | 5.67128182 |
15° | \(\frac{\pi}{12}\) | 3.73205081 |
20° | \(\frac{\pi}{9}\) | 2.74747742 |
25° | \(\frac{5\pi}{36}\) | 2.14450692 |
30° | \(\frac{\pi}{6}\) | 1.73205081 |
35° | \(\frac{7\pi}{36}\) | 1.42814801 |
40° | \(\frac{2\pi}{9}\) | 1.19175359 |
45° | \(\frac{\pi}{4}\) | 1 |
50° | \(\frac{5\pi}{18}\) | 0.83909963 |
55° | \(\frac{11\pi}{36}\) | 0.70020754 |
60° | \(\frac{\pi}{3}\) | 0.57735027 |
65° | \(\frac{13\pi}{36}\) | 0.46630766 |
70° | \(\frac{7\pi}{18}\) | 0.36397023 |
75° | \(\frac{5\pi}{12}\) | 0.26794919 |
80° | \(\frac{4\pi}{9}\) | 0.17632698 |
85° | \(\frac{17\pi}{36}\) | 0.08748866 |
90° | \(\frac{\pi}{2}\) | 0 |
95° | \(\frac{19\pi}{36}\) | -0.08748866 |
100° | \(\frac{5\pi}{9}\) | -0.17632698 |
105° | \(\frac{7\pi}{12}\) | -0.26794919 |
110° | \(\frac{11\pi}{18}\) | -0.36397023 |
115° | \(\frac{23\pi}{36}\) | -0.46630766 |
120° | \(\frac{2\pi}{3}\) | -0.57735027 |
125° | \(\frac{25\pi}{36}\) | -0.70020754 |
130° | \(\frac{13\pi}{18}\) | -0.83909963 |
135° | \(\frac{3\pi}{4}\) | -1 |
140° | \(\frac{7\pi}{9}\) | -1.19175359 |
145° | \(\frac{29\pi}{36}\) | -1.42814801 |
150° | \(\frac{5\pi}{6}\) | -1.73205081 |
155° | \(\frac{31\pi}{36}\) | -2.14450692 |
160° | \(\frac{8\pi}{9}\) | -2.74747742 |
165° | \(\frac{11\pi}{12}\) | -3.73205081 |
170° | \(\frac{17\pi}{18}\) | -5.67128182 |
175° | \(\frac{35\pi}{36}\) | -11.4300523 |
185° | \(\frac{37\pi}{36}\) | 11.4300523 |
190° | \(\frac{19\pi}{18}\) | 5.67128182 |
195° | \(\frac{13\pi}{12}\) | 3.73205081 |
200° | \(\frac{10\pi}{9}\) | 2.74747742 |
205° | \(\frac{41\pi}{36}\) | 2.14450692 |
210° | \(\frac{7\pi}{6}\) | 1.73205081 |
215° | \(\frac{43\pi}{36}\) | 1.42814801 |
220° | \(\frac{11\pi}{9}\) | 1.19175359 |
225° | \(\frac{5\pi}{4}\) | 1 |
230° | \(\frac{23\pi}{18}\) | 0.83909963 |
235° | \(\frac{47\pi}{36}\) | 0.70020754 |
240° | \(\frac{4\pi}{3}\) | 0.57735027 |
245° | \(\frac{49\pi}{36}\) | 0.46630766 |
250° | \(\frac{25\pi}{18}\) | 0.36397023 |
255° | \(\frac{17\pi}{12}\) | 0.26794919 |
260° | \(\frac{13\pi}{9}\) | 0.17632698 |
265° | \(\frac{53\pi}{36}\) | 0.08748866 |
270° | \(\frac{3\pi}{2}\) | 0 |
275° | \(\frac{55\pi}{36}\) | -0.08748866 |
280° | \(\frac{14\pi}{9}\) | -0.17632698 |
285° | \(\frac{19\pi}{12}\) | -0.26794919 |
290° | \(\frac{29\pi}{18}\) | -0.36397023 |
295° | \(\frac{59\pi}{36}\) | -0.46630766 |
300° | \(\frac{5\pi}{3}\) | -0.57735027 |
305° | \(\frac{61\pi}{36}\) | -0.70020754 |
310° | \(\frac{31\pi}{18}\) | -0.83909963 |
315° | \(\frac{7\pi}{4}\) | -1 |
320° | \(\frac{16\pi}{9}\) | -1.19175359 |
325° | \(\frac{65\pi}{36}\) | -1.42814801 |
330° | \(\frac{11\pi}{6}\) | -1.73205081 |
335° | \(\frac{67\pi}{36}\) | -2.14450692 |
340° | \(\frac{17\pi}{9}\) | -2.74747742 |
345° | \(\frac{23\pi}{12}\) | -3.73205081 |
350° | \(\frac{35\pi}{18}\) | -5.67128182 |
355° | \(\frac{71\pi}{36}\) | -11.4300523 |