Input an angle (in degrees or radians) to quickly calculate its cosine value.
The cosine function is one of the fundamental trigonometric functions and is widely used to describe periodic changes in mathematics, physics, and engineering.
In a right triangle, the cosine of an angle \(\theta\) is defined as the ratio of the length of the adjacent side to the hypotenuse:
\( \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{b}{c} \)
In the unit circle, the cosine of an angle \(\theta\) corresponds to the \(x\)-coordinate of the point on the circle's circumference. Thus, cosine can be expressed as: \( \cos(\theta) = x \) where \(x\) is the horizontal coordinate of the point on the unit circle associated with the angle \(\theta\).
In a right triangle with an angle \(\theta = 60^\circ\), an adjacent side of 4 units, and a hypotenuse of 8 units, calculate the cosine value.
Solution:
Using the cosine formula:
\( \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{4}{8} = 0.5 \)
The cosine of \(60^\circ\) is \(0.5\).
Suppose a physical experiment involves an object sliding down a ramp at an angle \(\theta = 30^\circ\) with a ramp length of 10 meters. Calculate the horizontal distance the object travels.
Solution:
From the cosine definition:
\( \cos(30^\circ) = \frac{\text{Horizontal Distance}}{\text{Ramp Length}} = \frac{\text{Horizontal Distance}}{10} \)
Since \(\cos(30^\circ) = \frac{\sqrt{3}}{2} \approx 0.866\):
\( 0.866 = \frac{\text{Horizontal Distance}}{10} \)
Solving for the horizontal distance:
\( \text{Horizontal Distance} = 0.866 \times 10 = 8.66 \, \text{m} \)
The object travels a horizontal distance of 8.66 meters.
The cosine graph is a smooth, periodic wave starting at its maximum value. It repeats every \(2\pi\) and is commonly used to describe cyclical phenomena like waves and oscillations.
The cosine function's behavior varies across the four quadrants:
Quadrant | Degrees | Radians | Sign | Range | Monotonicity |
---|---|---|---|---|---|
First Quadrant | \(0^\circ\) - \(90^\circ\) | \(0\) - \(\frac{\pi}{2}\) | Positive | \([1, 0)\) | Decreasing |
Second Quadrant | \(90^\circ\) - \(180^\circ\) | \(\frac{\pi}{2}\) - \(\pi\) | Positive | \((0, -1]\) | Decreasing |
Third Quadrant | \(180^\circ\) - \(270^\circ\) | \(\pi\) - \(\frac{3\pi}{2}\) | Negative | \([-1, 0)\) | Increasing |
Fourth Quadrant | \(270^\circ\) - \(360^\circ\) | \(\frac{3\pi}{2}\) - \(2\pi\) | Negative | \((0, 1]\) | Increasing |
The reciprocal of the cosine function is the secant function (\(\sec(\theta)\)): \( \frac{1}{\cos(\theta)} = \sec(\theta) \) Note: The secant function is undefined when \(\cos(\theta) = 0\).
The derivative of the cosine function is the negative sine function: \( \frac{d}{d\theta} \cos(\theta) = -\sin(\theta) \) This is frequently used in physics and engineering, especially for analyzing oscillatory motion.
The integral of the cosine function is the sine function: \( \int \cos(\theta) \, d\theta = \sin(\theta) + C \)
The inverse cosine function (\(\arccos(x)\)) determines the angle corresponding to a given cosine value. Its domain is \([-1, 1]\), and its range is \([0, \pi]\): \( \theta = \arccos(x) \)
Degree | Radian | Cosine Value |
---|---|---|
0° | 0 | 1 |
5° | \(\frac{\pi}{36}\) | 0.9961947 |
10° | \(\frac{\pi}{18}\) | 0.98480775 |
15° | \(\frac{\pi}{12}\) | 0.96592583 |
20° | \(\frac{\pi}{9}\) | 0.93969262 |
25° | \(\frac{5\pi}{36}\) | 0.90630779 |
30° | \(\frac{\pi}{6}\) | 0.8660254 |
35° | \(\frac{7\pi}{36}\) | 0.81915204 |
40° | \(\frac{2\pi}{9}\) | 0.76604444 |
45° | \(\frac{\pi}{4}\) | 0.70710678 |
50° | \(\frac{5\pi}{18}\) | 0.64278761 |
55° | \(\frac{11\pi}{36}\) | 0.57357644 |
60° | \(\frac{\pi}{3}\) | 0.5 |
65° | \(\frac{13\pi}{36}\) | 0.42261826 |
70° | \(\frac{7\pi}{18}\) | 0.34202014 |
75° | \(\frac{5\pi}{12}\) | 0.25881905 |
80° | \(\frac{4\pi}{9}\) | 0.17364818 |
85° | \(\frac{17\pi}{36}\) | 0.08715574 |
90° | \(\frac{\pi}{2}\) | 0 |
95° | \(\frac{19\pi}{36}\) | -0.08715574 |
100° | \(\frac{5\pi}{9}\) | -0.17364818 |
105° | \(\frac{7\pi}{12}\) | -0.25881905 |
110° | \(\frac{11\pi}{18}\) | -0.34202014 |
115° | \(\frac{23\pi}{36}\) | -0.42261826 |
120° | \(\frac{2\pi}{3}\) | -0.5 |
125° | \(\frac{25\pi}{36}\) | -0.57357644 |
130° | \(\frac{13\pi}{18}\) | -0.64278761 |
135° | \(\frac{3\pi}{4}\) | -0.70710678 |
140° | \(\frac{7\pi}{9}\) | -0.76604444 |
145° | \(\frac{29\pi}{36}\) | -0.81915204 |
150° | \(\frac{5\pi}{6}\) | -0.8660254 |
155° | \(\frac{31\pi}{36}\) | -0.90630779 |
160° | \(\frac{8\pi}{9}\) | -0.93969262 |
165° | \(\frac{11\pi}{12}\) | -0.96592583 |
170° | \(\frac{17\pi}{18}\) | -0.98480775 |
175° | \(\frac{35\pi}{36}\) | -0.9961947 |
180° | π | -1 |
185° | \(\frac{37\pi}{36}\) | -0.9961947 |
190° | \(\frac{19\pi}{18}\) | -0.98480775 |
195° | \(\frac{13\pi}{12}\) | -0.96592583 |
200° | \(\frac{10\pi}{9}\) | -0.93969262 |
205° | \(\frac{41\pi}{36}\) | -0.90630779 |
210° | \(\frac{7\pi}{6}\) | -0.8660254 |
215° | \(\frac{43\pi}{36}\) | -0.81915204 |
220° | \(\frac{11\pi}{9}\) | -0.76604444 |
225° | \(\frac{5\pi}{4}\) | -0.70710678 |
230° | \(\frac{23\pi}{18}\) | -0.64278761 |
235° | \(\frac{47\pi}{36}\) | -0.57357644 |
240° | \(\frac{4\pi}{3}\) | -0.5 |
245° | \(\frac{49\pi}{36}\) | -0.42261826 |
250° | \(\frac{25\pi}{18}\) | -0.34202014 |
255° | \(\frac{17\pi}{12}\) | -0.25881905 |
260° | \(\frac{13\pi}{9}\) | -0.17364818 |
265° | \(\frac{53\pi}{36}\) | -0.08715574 |
270° | \(\frac{3\pi}{2}\) | 0 |
275° | \(\frac{55\pi}{36}\) | 0.08715574 |
280° | \(\frac{14\pi}{9}\) | 0.17364818 |
285° | \(\frac{19\pi}{12}\) | 0.25881905 |
290° | \(\frac{29\pi}{18}\) | 0.34202014 |
295° | \(\frac{59\pi}{36}\) | 0.42261826 |
300° | \(\frac{5\pi}{3}\) | 0.5 |
305° | \(\frac{61\pi}{36}\) | 0.57357644 |
310° | \(\frac{31\pi}{18}\) | 0.64278761 |
315° | \(\frac{7\pi}{4}\) | 0.70710678 |
320° | \(\frac{16\pi}{9}\) | 0.76604444 |
325° | \(\frac{65\pi}{36}\) | 0.81915204 |
330° | \(\frac{11\pi}{6}\) | 0.8660254 |
335° | \(\frac{67\pi}{36}\) | 0.90630779 |
340° | \(\frac{17\pi}{9}\) | 0.93969262 |
345° | \(\frac{23\pi}{12}\) | 0.96592583 |
350° | \(\frac{35\pi}{18}\) | 0.98480775 |
355° | \(\frac{71\pi}{36}\) | 0.9961947 |
360° | 2π | 1 |