Cosine Calculator

Input an angle (in degrees or radians) to quickly calculate its cosine value.

Calculate Cos(θ)

Result

Definition of Cosine

right triangle

The cosine function is one of the fundamental trigonometric functions and is widely used to describe periodic changes in mathematics, physics, and engineering.

In a right triangle, the cosine of an angle \(\theta\) is defined as the ratio of the length of the adjacent side to the hypotenuse: \( \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{b}{c} \)

In the unit circle, the cosine of an angle \(\theta\) corresponds to the \(x\)-coordinate of the point on the circle's circumference. Thus, cosine can be expressed as: \( \cos(\theta) = x \) where \(x\) is the horizontal coordinate of the point on the unit circle associated with the angle \(\theta\).

Examples

Example 1: Calculating Cosine in a Right Triangle

In a right triangle with an angle \(\theta = 60^\circ\), an adjacent side of 4 units, and a hypotenuse of 8 units, calculate the cosine value.

Solution:

Using the cosine formula:

\( \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{4}{8} = 0.5 \)

The cosine of \(60^\circ\) is \(0.5\).

Example 2: Real-Life Application

Suppose a physical experiment involves an object sliding down a ramp at an angle \(\theta = 30^\circ\) with a ramp length of 10 meters. Calculate the horizontal distance the object travels.

Solution:

From the cosine definition:

\( \cos(30^\circ) = \frac{\text{Horizontal Distance}}{\text{Ramp Length}} = \frac{\text{Horizontal Distance}}{10} \)

Since \(\cos(30^\circ) = \frac{\sqrt{3}}{2} \approx 0.866\):

\( 0.866 = \frac{\text{Horizontal Distance}}{10} \)

Solving for the horizontal distance:

\( \text{Horizontal Distance} = 0.866 \times 10 = 8.66 \, \text{m} \)

The object travels a horizontal distance of 8.66 meters.

Cosine Function Graph and Properties

cosine graph

The cosine graph is a smooth, periodic wave starting at its maximum value. It repeats every \(2\pi\) and is commonly used to describe cyclical phenomena like waves and oscillations.

  • Periodicity: The cosine function has a period of \(2\pi\), \(\cos(\theta + 2\pi) = \ cos(\theta)\).
  • Symmetry: Cosine is an even function, meaning: \(\cos(-\theta) = \cos(\theta)\), This symmetry reflects the graph's mirror image about the \(y\)-axis.
  • Amplitude: The amplitude of the cosine wave is 1, with values ranging from \(-1\) to \(1\).
  • Start Point: At \(\theta = 0\), the function begins at its maximum value, \(1\).
  • Domain and Range: The cosine function is defined for all real numbers (\(\mathbb{R}\)), and its range is \([-1, 1]\).

Quadrant Properties of Cosine

The cosine function's behavior varies across the four quadrants:

Quadrant Degrees Radians Sign Range Monotonicity
First Quadrant\(0^\circ\) - \(90^\circ\)\(0\) - \(\frac{\pi}{2}\)Positive\([1, 0)\)Decreasing
Second Quadrant\(90^\circ\) - \(180^\circ\)\(\frac{\pi}{2}\) - \(\pi\)Positive\((0, -1]\)Decreasing
Third Quadrant\(180^\circ\) - \(270^\circ\)\(\pi\) - \(\frac{3\pi}{2}\)Negative\([-1, 0)\)Increasing
Fourth Quadrant\(270^\circ\) - \(360^\circ\)\(\frac{3\pi}{2}\) - \(2\pi\)Negative\((0, 1]\)Increasing

Additional Cosine Calculations

1. Reciprocal of Cosine (Secant Function)

The reciprocal of the cosine function is the secant function (\(\sec(\theta)\)): \( \frac{1}{\cos(\theta)} = \sec(\theta) \) Note: The secant function is undefined when \(\cos(\theta) = 0\).

2. Derivative of Cosine

The derivative of the cosine function is the negative sine function: \( \frac{d}{d\theta} \cos(\theta) = -\sin(\theta) \) This is frequently used in physics and engineering, especially for analyzing oscillatory motion.

3. Integral of Cosine

The integral of the cosine function is the sine function: \( \int \cos(\theta) \, d\theta = \sin(\theta) + C \)

4. Inverse Cosine (Arccosine)

The inverse cosine function (\(\arccos(x)\)) determines the angle corresponding to a given cosine value. Its domain is \([-1, 1]\), and its range is \([0, \pi]\): \( \theta = \arccos(x) \)

Cosine Values Table

Degree Radian Cosine Value
01
\(\frac{\pi}{36}\)0.9961947
10°\(\frac{\pi}{18}\)0.98480775
15°\(\frac{\pi}{12}\)0.96592583
20°\(\frac{\pi}{9}\)0.93969262
25°\(\frac{5\pi}{36}\)0.90630779
30°\(\frac{\pi}{6}\)0.8660254
35°\(\frac{7\pi}{36}\)0.81915204
40°\(\frac{2\pi}{9}\)0.76604444
45°\(\frac{\pi}{4}\)0.70710678
50°\(\frac{5\pi}{18}\)0.64278761
55°\(\frac{11\pi}{36}\)0.57357644
60°\(\frac{\pi}{3}\)0.5
65°\(\frac{13\pi}{36}\)0.42261826
70°\(\frac{7\pi}{18}\)0.34202014
75°\(\frac{5\pi}{12}\)0.25881905
80°\(\frac{4\pi}{9}\)0.17364818
85°\(\frac{17\pi}{36}\)0.08715574
90°\(\frac{\pi}{2}\)0
95°\(\frac{19\pi}{36}\)-0.08715574
100°\(\frac{5\pi}{9}\)-0.17364818
105°\(\frac{7\pi}{12}\)-0.25881905
110°\(\frac{11\pi}{18}\)-0.34202014
115°\(\frac{23\pi}{36}\)-0.42261826
120°\(\frac{2\pi}{3}\)-0.5
125°\(\frac{25\pi}{36}\)-0.57357644
130°\(\frac{13\pi}{18}\)-0.64278761
135°\(\frac{3\pi}{4}\)-0.70710678
140°\(\frac{7\pi}{9}\)-0.76604444
145°\(\frac{29\pi}{36}\)-0.81915204
150°\(\frac{5\pi}{6}\)-0.8660254
155°\(\frac{31\pi}{36}\)-0.90630779
160°\(\frac{8\pi}{9}\)-0.93969262
165°\(\frac{11\pi}{12}\)-0.96592583
170°\(\frac{17\pi}{18}\)-0.98480775
175°\(\frac{35\pi}{36}\)-0.9961947
180°π-1
185°\(\frac{37\pi}{36}\)-0.9961947
190°\(\frac{19\pi}{18}\)-0.98480775
195°\(\frac{13\pi}{12}\)-0.96592583
200°\(\frac{10\pi}{9}\)-0.93969262
205°\(\frac{41\pi}{36}\)-0.90630779
210°\(\frac{7\pi}{6}\)-0.8660254
215°\(\frac{43\pi}{36}\)-0.81915204
220°\(\frac{11\pi}{9}\)-0.76604444
225°\(\frac{5\pi}{4}\)-0.70710678
230°\(\frac{23\pi}{18}\)-0.64278761
235°\(\frac{47\pi}{36}\)-0.57357644
240°\(\frac{4\pi}{3}\)-0.5
245°\(\frac{49\pi}{36}\)-0.42261826
250°\(\frac{25\pi}{18}\)-0.34202014
255°\(\frac{17\pi}{12}\)-0.25881905
260°\(\frac{13\pi}{9}\)-0.17364818
265°\(\frac{53\pi}{36}\)-0.08715574
270°\(\frac{3\pi}{2}\)0
275°\(\frac{55\pi}{36}\)0.08715574
280°\(\frac{14\pi}{9}\)0.17364818
285°\(\frac{19\pi}{12}\)0.25881905
290°\(\frac{29\pi}{18}\)0.34202014
295°\(\frac{59\pi}{36}\)0.42261826
300°\(\frac{5\pi}{3}\)0.5
305°\(\frac{61\pi}{36}\)0.57357644
310°\(\frac{31\pi}{18}\)0.64278761
315°\(\frac{7\pi}{4}\)0.70710678
320°\(\frac{16\pi}{9}\)0.76604444
325°\(\frac{65\pi}{36}\)0.81915204
330°\(\frac{11\pi}{6}\)0.8660254
335°\(\frac{67\pi}{36}\)0.90630779
340°\(\frac{17\pi}{9}\)0.93969262
345°\(\frac{23\pi}{12}\)0.96592583
350°\(\frac{35\pi}{18}\)0.98480775
355°\(\frac{71\pi}{36}\)0.9961947
360°1