MathBz MathBz
  • Home
  • Calculators
  • Checkers
  • Converters
  • Symbols
Search Site
Type and hit enter to search

Arctan Calculator – Find the Exact Value of Inverse Tangent

Arctan Calculator is a simple tool for finding angles based on tangent values. All you have to do is enter the tangent value and get the corresponding angle in degrees or radians in the blink of an eye.

Arctan Calculator

Calculate Reset

What is arctan?

The full name of arctan is arctangent, which is the inverse function of tangent. It is one of the six inverse trigonometric functions. In a right triangle, the arctangent is used to find the angle from the ratio of the opposite side to the adjacent side. In addition to arctan, the arctangent is also usually expressed in tan-1. Sometimes, you’ll see arctg, which used to be arctangent notation, but it’s outdated now.

Arctan graph and properties

Since tangent is a periodic function. In order to ensure that the tangent function has an inverse function, the domain of the tangent function is limited to (-π2, π2). According to the tangent graph, we can get the arctangent graph as follows

arctangent graph

arctangent graph

  1. Domain – The domain of arctangent is all real numbers.
  2. Range – The arctangent is between -π2 and π2, excluding -π2 and π2.
  3. Monotonicity – In the domain, the arctangent is monotonically increasing
  4. Odd function – Since arctan(x) = -arctan(-x), the arctangent is an odd function.

How to calculate arctan?

There are two common ways to calculate the arctangent. One is to look up the table, and the other is to use a calculator. The look-up table is based on the inverse tangent table to find the relationship between the corresponding tangent value and the angle. The disadvantage of the inverse tangent table is that it cannot list all possible values. So, now everyone will borrow the arctan calculator to calculate the value of the inverse tangent function.

arctan(x) Degrees Radians
-57.28996163 -89° -89π180
-28.63625328 -88° -22π45
-19.08113669 -87° -29π60
-14.30066626 -86° -43π90
-11.4300523 -85° -17π36
-9.51436445 -84° -7π15
-8.14434643 -83° -83π180
-7.11536972 -82° -41π90
-6.31375151 -81° -9π20
-5.67128182 -80° -4π9
-5.14455402 -79° -79π180
-4.70463011 -78° -13π30
-4.33147587 -77° -77π180
-4.01078093 -76° -19π45
-3.73205081 -75° -5π12
-3.48741444 -74° -37π90
-3.27085262 -73° -73π180
-3.07768354 -72° -2π5
-2.90421088 -71° -71π180
-2.74747742 -70° -7π18
-2.60508906 -69° -23π60
-2.47508685 -68° -17π45
-2.35585237 -67° -67π180
-2.24603677 -66° -11π30
-2.14450692 -65° -13π36
-2.05030384 -64° -16π45
-1.96261051 -63° -7π20
-1.88072647 -62° -31π90
-1.80404776 -61° -61π180
-1.73205081 -60° -1π3
-1.66427948 -59° -59π180
-1.60033453 -58° -29π90
-1.53986496 -57° -19π60
-1.48256097 -56° -14π45
-1.42814801 -55° -11π36
-1.37638192 -54° -3π10
-1.32704482 -53° -53π180
-1.27994163 -52° -13π45
-1.23489716 -51° -17π60
-1.19175359 -50° -5π18
-1.15036841 -49° -49π180
-1.11061251 -48° -4π15
-1.07236871 -47° -47π180
-1.03553031 -46° -23π90
-1 -45° -1π4
-0.96568877 -44° -11π45
-0.93251509 -43° -43π180
-0.90040404 -42° -7π30
-0.86928674 -41° -41π180
-0.83909963 -40° -2π9
-0.80978403 -39° -13π60
-0.78128563 -38° -19π90
-0.75355405 -37° -37π180
-0.72654253 -36° -1π5
-0.70020754 -35° -7π36
-0.67450852 -34° -17π90
-0.64940759 -33° -11π60
-0.62486935 -32° -8π45
-0.60086062 -31° -31π180
-0.57735027 -30° -1π6
-0.55430905 -29° -29π180
-0.53170943 -28° -7π45
-0.50952545 -27° -3π20
-0.48773259 -26° -13π90
-0.46630766 -25° -5π36
-0.44522869 -24° -2π15
-0.42447482 -23° -23π180
-0.40402623 -22° -11π90
-0.38386404 -21° -7π60
-0.36397023 -20° -1π9
-0.34432761 -19° -19π180
-0.3249197 -18° -1π10
-0.30573068 -17° -17π180
-0.28674539 -16° -4π45
-0.26794919 -15° -1π12
-0.249328 -14° -7π90
-0.23086819 -13° -13π180
-0.21255656 -12° -1π15
-0.19438031 -11° -11π180
-0.17632698 -10° -1π18
-0.15838444 -9° -1π20
-0.14054083 -8° -2π45
-0.12278456 -7° -7π180
-0.10510424 -6° -1π30
-0.08748866 -5° -1π36
-0.06992681 -4° -1π45
-0.05240778 -3° -1π60
-0.03492077 -2° -1π90
-0.01745506 -1° -1π180
0 0° 0
0.01745506 1° π180
0.03492077 2° π90
0.05240778 3° π60
0.06992681 4° π45
0.08748866 5° π36
0.10510424 6° π30
0.12278456 7° 7π180
0.14054083 8° 2π45
0.15838444 9° π20
0.17632698 10° π18
0.19438031 11° 11π180
0.21255656 12° π15
0.23086819 13° 13π180
0.249328 14° 7π90
0.26794919 15° π12
0.28674539 16° 4π45
0.30573068 17° 17π180
0.3249197 18° π10
0.34432761 19° 19π180
0.36397023 20° π9
0.38386404 21° 7π60
0.40402623 22° 11π90
0.42447482 23° 23π180
0.44522869 24° 2π15
0.46630766 25° 5π36
0.48773259 26° 13π90
0.50952545 27° 3π20
0.53170943 28° 7π45
0.55430905 29° 29π180
0.57735027 30° π6
0.60086062 31° 31π180
0.62486935 32° 8π45
0.64940759 33° 11π60
0.67450852 34° 17π90
0.70020754 35° 7π36
0.72654253 36° π5
0.75355405 37° 37π180
0.78128563 38° 19π90
0.80978403 39° 13π60
0.83909963 40° 2π9
0.86928674 41° 41π180
0.90040404 42° 7π30
0.93251509 43° 43π180
0.96568877 44° 11π45
1 45° π4
1.03553031 46° 23π90
1.07236871 47° 47π180
1.11061251 48° 4π15
1.15036841 49° 49π180
1.19175359 50° 5π18
1.23489716 51° 17π60
1.27994163 52° 13π45
1.32704482 53° 53π180
1.37638192 54° 3π10
1.42814801 55° 11π36
1.48256097 56° 14π45
1.53986496 57° 19π60
1.60033453 58° 29π90
1.66427948 59° 59π180
1.73205081 60° π3
1.80404776 61° 61π180
1.88072647 62° 31π90
1.96261051 63° 7π20
2.05030384 64° 16π45
2.14450692 65° 13π36
2.24603677 66° 11π30
2.35585237 67° 67π180
2.47508685 68° 17π45
2.60508906 69° 23π60
2.74747742 70° 7π18
2.90421088 71° 71π180
3.07768354 72° 2π5
3.27085262 73° 73π180
3.48741444 74° 37π90
3.73205081 75° 5π12
4.01078093 76° 19π45
4.33147587 77° 77π180
4.70463011 78° 13π30
5.14455402 79° 79π180
5.67128182 80° 4π9
6.31375151 81° 9π20
7.11536972 82° 41π90
8.14434643 83° 83π180
9.51436445 84° 7π15
11.4300523 85° 17π36
14.30066626 86° 43π90
19.08113669 87° 29π60
28.63625328 88° 22π45
57.28996163 89° 89π180

How to use this arctan calculator

The use of the arctan calculator is very simple, just enter the value and click the calculation button. This value can be an integer, decimal or fraction. The numerator and denominator of fractions are separated by /. For example, 3, 0.5, 1/4 and so on.

FAQS

  • Q: Are arctan and tan^-1 the same?
    A: Yes, they both mean arctangent.
  • Q: Is arctangent equal to cos/sin?
    A: No. Arctangent is the inverse function of tangent, and cos/sin means cotangent, which is the reciprocal of tangent.
  • Q: Are inverse tangent and cotangent the same?
    A: No. They are different. The inverse function of tangent is arctangent, and cotangent is the reciprocal of tangent.
  • Q: What is the inverse tangent of tangent?
    A: Denote an angle as θ, then the inverse tangent of tangent is equal to θ.

    arctan(tan(θ)) = θ

  • Q: Is inverse tangent equal to adjacent over opposite?
    A: No. The inverse tangent is the angle obtained from the ratio of the opposite side to the adjacent side. And adjacent over opposite represents the cotangent. The two of them are completely different.
  • Q: When to use inverse tangent?
    A: In a right triangle, when the ratio of the opposite side to the adjacent side of the acute angle is known, to calculate the angle, the arctangent can be considered.

Conclusion

In short, the arctangent is defined as an angle, which is the inverse function of the tangent. If you want to calculate the value of the arctangent, please use the arctan calculator provided on this page.

Latest Calculators

Point-Slope Form Calculator

Standard Form to Slope-Intercept Form Calculator

Slope Intercept Form Calculator

Slope Calculator: Calculate Slope, X-Intercept, Y-Intercept

Reciprocal of Complex Number Calculator

Conjugate Complex Number Calculator

Modulus of Complex Number Calculator

Complex Number Calculator

Profit Percentage Calculator: Calculate Your Profitability Easily

Attendance and Absence Percentage Calculator

Trigonometric Functions

Arccsc Calculator – Find the Exact Value of Inverse Cosecant

Arcsec Calculator – Find the Exact Value of Inverse Secant

Arccot Calculator – Find the Exact Value of Inverse Cotangent

Inverse Cosine Calculator – Find The Exact Value of Arccos

Inverse Sine Calculator – Find The Exact Value of Arcsin

Inverse Trigonometric Functions Calculator

Trigonometric Functions Conversion Calculator

Trig Calculator – Find 6 Trigonometric Functions by Angles or Sides

Cosecant Calculator

0 like
  • 0
  • 0
  • 0
  • 0
CopyRight © MathBz.com All rights reserved.
  • Home
  • About Us
  • Contact Us
  • Privacy Policy and Cookies
Back to top of page