The Arcsec Calculator is a handy online tool for finding the corresponding angle from the value of the secant.
What is arcsec?
Arcsec is the abbreviation of arcsecant, which is the inverse function of secant. It is one of the six inverse trigonometric functions (the other 5 are arcsin, arccos, arctan, arccot and arccsc). The arcsec is a function used to find the size of the angle based on the given ratio of the hypotenuse to the adjacent side. Its formula is:
θ = arcsec(hypotenuseadjacent)
In addition to arcsec, you can also use sec-1 to represent inverse secant.
Arcsec graph and properties
Since the secant function is a periodic function, the secant function is not a bijective function, so there is no inverse function. To get the inverse of secant, we specify the domain of the secant function to be between 0 and π, excluding π2. The arcsec graph is as follows:
- Domain – The absolute value of the domain of arcsecant is greater than or equal to 1. That is, less than or equal to -1 or greater than or equal to 1.
- Range – The arcsecant range is between 0 and π, excluding π2.
- Monotonicity – In the domain, the arcsecant is monotonically increasing.
- Neither odd nor even function – Because arcsec(x) ≠ arcsec(-x), arcsecant is not an even function. At the same time, arcsec(x) ≠ -arcsec(-x), so arcsecant is not an odd function.
How to calculate arcsec?
The easiest way to calculate the arcsec is to use the inverse secant calculator. Because the inverse secant is difficult to calculate by hand. Some people may use the arcsecant table (given below) to find the corresponding angle, but the inverse secant table has obvious defects. It is impossible to list all inverse secant values. When encountering a value that doesn’t exist in the inverse secant table, there’s nothing you can do about it. So, using an inverse secant calculator is the best option.
Arcsec(x) | Degrees | Radians |
1 | 0° | 0 |
1.00015233 | 1° | π180 |
1.00060954 | 2° | π90 |
1.00137235 | 3° | π60 |
1.0024419 | 4° | π45 |
1.00381984 | 5° | π36 |
1.00550828 | 6° | π30 |
1.00750983 | 7° | 7π180 |
1.00982757 | 8° | 2π45 |
1.01246513 | 9° | π20 |
1.01542661 | 10° | π18 |
1.01871669 | 11° | 11π180 |
1.02234059 | 12° | π15 |
1.02630411 | 13° | 13π180 |
1.03061363 | 14° | 7π90 |
1.03527618 | 15° | π12 |
1.04029944 | 16° | 4π45 |
1.04569176 | 17° | 17π180 |
1.05146222 | 18° | π10 |
1.05762068 | 19° | 19π180 |
1.06417777 | 20° | π9 |
1.07114499 | 21° | 7π60 |
1.07853474 | 22° | 11π90 |
1.08636038 | 23° | 23π180 |
1.09463628 | 24° | 2π15 |
1.10337792 | 25° | 5π36 |
1.11260194 | 26° | 13π90 |
1.12232624 | 27° | 3π20 |
1.13257005 | 28° | 7π45 |
1.14335407 | 29° | 29π180 |
1.15470054 | 30° | π6 |
1.1666334 | 31° | 31π180 |
1.1791784 | 32° | 8π45 |
1.19236329 | 33° | 11π60 |
1.20621795 | 34° | 17π90 |
1.22077459 | 35° | 7π36 |
1.23606798 | 36° | π5 |
1.25213566 | 37° | 37π180 |
1.26901822 | 38° | 19π90 |
1.28675957 | 39° | 13π60 |
1.30540729 | 40° | 2π9 |
1.32501299 | 41° | 41π180 |
1.34563273 | 42° | 7π30 |
1.36732746 | 43° | 43π180 |
1.39016359 | 44° | 11π45 |
1.41421356 | 45° | π4 |
1.43955654 | 46° | 23π90 |
1.46627919 | 47° | 47π180 |
1.49447655 | 48° | 4π15 |
1.52425309 | 49° | 49π180 |
1.55572383 | 50° | 5π18 |
1.58901573 | 51° | 17π60 |
1.62426925 | 52° | 13π45 |
1.66164014 | 53° | 53π180 |
1.70130162 | 54° | 3π10 |
1.7434468 | 55° | 11π36 |
1.78829165 | 56° | 14π45 |
1.83607846 | 57° | 19π60 |
1.88707991 | 58° | 29π90 |
1.94160403 | 59° | 59π180 |
2 | 60° | π3 |
2.06266534 | 61° | 61π180 |
2.13005447 | 62° | 31π90 |
2.20268926 | 63° | 7π20 |
2.28117203 | 64° | 16π45 |
2.36620158 | 65° | 13π36 |
2.45859334 | 66° | 11π30 |
2.55930467 | 67° | 67π180 |
2.66946716 | 68° | 17π45 |
2.79042811 | 69° | 23π60 |
2.9238044 | 70° | 7π18 |
3.07155349 | 71° | 71π180 |
3.23606798 | 72° | 2π5 |
3.42030362 | 73° | 73π180 |
3.62795528 | 74° | 37π90 |
3.86370331 | 75° | 5π12 |
4.13356549 | 76° | 19π45 |
4.44541148 | 77° | 77π180 |
4.80973434 | 78° | 13π30 |
5.24084306 | 79° | 79π180 |
5.75877048 | 80° | 4π9 |
6.39245322 | 81° | 9π20 |
7.18529653 | 82° | 41π90 |
8.20550905 | 83° | 83π180 |
9.56677223 | 84° | 7π15 |
11.47371325 | 85° | 17π36 |
14.33558703 | 86° | 43π90 |
19.10732261 | 87° | 29π60 |
28.65370835 | 88° | 22π45 |
57.2986885 | 89° | 89π180 |
-57.2986885 | 91° | 91π180 |
-28.65370835 | 92° | 23π45 |
-19.10732261 | 93° | 31π60 |
-14.33558703 | 94° | 47π90 |
-11.47371325 | 95° | 19π36 |
-9.56677223 | 96° | 8π15 |
-8.20550905 | 97° | 97π180 |
-7.18529653 | 98° | 49π90 |
-6.39245322 | 99° | 11π20 |
-5.75877048 | 100° | 5π9 |
-5.24084306 | 101° | 101π180 |
-4.80973434 | 102° | 17π30 |
-4.44541148 | 103° | 103π180 |
-4.13356549 | 104° | 26π45 |
-3.86370331 | 105° | 7π12 |
-3.62795528 | 106° | 53π90 |
-3.42030362 | 107° | 107π180 |
-3.23606798 | 108° | 3π5 |
-3.07155349 | 109° | 109π180 |
-2.9238044 | 110° | 11π18 |
-2.79042811 | 111° | 37π60 |
-2.66946716 | 112° | 28π45 |
-2.55930467 | 113° | 113π180 |
-2.45859334 | 114° | 19π30 |
-2.36620158 | 115° | 23π36 |
-2.28117203 | 116° | 29π45 |
-2.20268926 | 117° | 13π20 |
-2.13005447 | 118° | 59π90 |
-2.06266534 | 119° | 119π180 |
-2 | 120° | 2π3 |
-1.94160403 | 121° | 121π180 |
-1.88707991 | 122° | 61π90 |
-1.83607846 | 123° | 41π60 |
-1.78829165 | 124° | 31π45 |
-1.7434468 | 125° | 25π36 |
-1.70130162 | 126° | 7π10 |
-1.66164014 | 127° | 127π180 |
-1.62426925 | 128° | 32π45 |
-1.58901573 | 129° | 43π60 |
-1.55572383 | 130° | 13π18 |
-1.52425309 | 131° | 131π180 |
-1.49447655 | 132° | 11π15 |
-1.46627919 | 133° | 133π180 |
-1.43955654 | 134° | 67π90 |
-1.41421356 | 135° | 3π4 |
-1.39016359 | 136° | 34π45 |
-1.36732746 | 137° | 137π180 |
-1.34563273 | 138° | 23π30 |
-1.32501299 | 139° | 139π180 |
-1.30540729 | 140° | 7π9 |
-1.28675957 | 141° | 47π60 |
-1.26901822 | 142° | 71π90 |
-1.25213566 | 143° | 143π180 |
-1.23606798 | 144° | 4π5 |
-1.22077459 | 145° | 29π36 |
-1.20621795 | 146° | 73π90 |
-1.19236329 | 147° | 49π60 |
-1.1791784 | 148° | 37π45 |
-1.1666334 | 149° | 149π180 |
-1.15470054 | 150° | 5π6 |
-1.14335407 | 151° | 151π180 |
-1.13257005 | 152° | 38π45 |
-1.12232624 | 153° | 17π20 |
-1.11260194 | 154° | 77π90 |
-1.10337792 | 155° | 31π36 |
-1.09463628 | 156° | 13π15 |
-1.08636038 | 157° | 157π180 |
-1.07853474 | 158° | 79π90 |
-1.07114499 | 159° | 53π60 |
-1.06417777 | 160° | 8π9 |
-1.05762068 | 161° | 161π180 |
-1.05146222 | 162° | 9π10 |
-1.04569176 | 163° | 163π180 |
-1.04029944 | 164° | 41π45 |
-1.03527618 | 165° | 11π12 |
-1.03061363 | 166° | 83π90 |
-1.02630411 | 167° | 167π180 |
-1.02234059 | 168° | 14π15 |
-1.01871669 | 169° | 169π180 |
-1.01542661 | 170° | 17π18 |
-1.01246513 | 171° | 19π20 |
-1.00982757 | 172° | 43π45 |
-1.00750983 | 173° | 173π180 |
-1.00550828 | 174° | 29π30 |
-1.00381984 | 175° | 35π36 |
-1.0024419 | 176° | 44π45 |
-1.00137235 | 177° | 59π60 |
-1.00060954 | 178° | 89π90 |
-1.00015233 | 179° | 179π180 |
-1 | 180° | π |
How to use this arcsec calculator
The arcsec calculator is easy to use. Just enter the value and click the calculation button. This value can be an integer, decimal or fraction. If entering a fraction, remember to separate the numerator and denominator with /.
FAQS
- Q: When to use inverse secant?A: In a right triangle, when the ratio of the hypotenuse side to the adjacent side of the acute angle is known, to calculate the angle, the arcsecant can be considered.
- Q: Are arcsec and sec^-1 the same?A: Yes, they are both inverse secant.
- Q: Is inverse secant the same as cosine?A: No. Cosine is the reciprocal of secant, not the same as the inverse function.
- Q: Why does the arcsec calculator calculate an error?A: If you make a mistake using the arcsec calculator, it’s probably a typo. The value entered is outside the inverse secant domain. The domains of arcsecant are (-∞,-1] and [1, +∞).
- Q: What is the inverse secant of 2?A: The inverse secant of 2 is 60 degrees, which is π3.
arcsec(2) = 60°
- Q: What is the inverse secant of root 2?A: The inverse secant of root 2 is 45 degrees, which is π4.
arcsec(√2) = 45°
Latest Calculators
Standard Form to Slope-Intercept Form Calculator
Slope Intercept Form Calculator
Slope Calculator: Calculate Slope, X-Intercept, Y-Intercept
Reciprocal of Complex Number Calculator
Conjugate Complex Number Calculator
Modulus of Complex Number Calculator
Profit Percentage Calculator: Calculate Your Profitability Easily
Attendance and Absence Percentage Calculator
Trigonometric Functions
Arccsc Calculator – Find the Exact Value of Inverse Cosecant
Arccot Calculator – Find the Exact Value of Inverse Cotangent
Arctan Calculator – Find the Exact Value of Inverse Tangent
Inverse Cosine Calculator – Find The Exact Value of Arccos
Inverse Sine Calculator – Find The Exact Value of Arcsin
Inverse Trigonometric Functions Calculator
Trigonometric Functions Conversion Calculator
Trig Calculator – Find 6 Trigonometric Functions by Angles or Sides