MathBz MathBz
  • Home
  • Calculators
  • Checkers
  • Converters
  • Symbols
Search Site
Type and hit enter to search

Arcsec Calculator – Find the Exact Value of Inverse Secant

The Arcsec Calculator is a handy online tool for finding the corresponding angle from the value of the secant.

Arcsec Calculator

Calculate Reset

What is arcsec?

Arcsec is the abbreviation of arcsecant, which is the inverse function of secant. It is one of the six inverse trigonometric functions (the other 5 are arcsin, arccos, arctan, arccot and arccsc). The arcsec is a function used to find the size of the angle based on the given ratio of the hypotenuse to the adjacent side. Its formula is:

θ = arcsec(hypotenuseadjacent)

In addition to arcsec, you can also use sec-1 to represent inverse secant.

Arcsec graph and properties

Since the secant function is a periodic function, the secant function is not a bijective function, so there is no inverse function. To get the inverse of secant, we specify the domain of the secant function to be between 0 and π, excluding π2. The arcsec graph is as follows:

arcsecant graph

arcsecant graph

  1. Domain – The absolute value of the domain of arcsecant is greater than or equal to 1. That is, less than or equal to -1 or greater than or equal to 1.
  2. Range – The arcsecant range is between 0 and π, excluding π2.
  3. Monotonicity – In the domain, the arcsecant is monotonically increasing.
  4. Neither odd nor even function – Because arcsec(x) ≠ arcsec(-x), arcsecant is not an even function. At the same time, arcsec(x) ≠ -arcsec(-x), so arcsecant is not an odd function.

How to calculate arcsec?

The easiest way to calculate the arcsec is to use the inverse secant calculator. Because the inverse secant is difficult to calculate by hand. Some people may use the arcsecant table (given below) to find the corresponding angle, but the inverse secant table has obvious defects. It is impossible to list all inverse secant values. When encountering a value that doesn’t exist in the inverse secant table, there’s nothing you can do about it. So, using an inverse secant calculator is the best option.

Arcsec(x) Degrees Radians
1 0° 0
1.00015233 1° π180
1.00060954 2° π90
1.00137235 3° π60
1.0024419 4° π45
1.00381984 5° π36
1.00550828 6° π30
1.00750983 7° 7π180
1.00982757 8° 2π45
1.01246513 9° π20
1.01542661 10° π18
1.01871669 11° 11π180
1.02234059 12° π15
1.02630411 13° 13π180
1.03061363 14° 7π90
1.03527618 15° π12
1.04029944 16° 4π45
1.04569176 17° 17π180
1.05146222 18° π10
1.05762068 19° 19π180
1.06417777 20° π9
1.07114499 21° 7π60
1.07853474 22° 11π90
1.08636038 23° 23π180
1.09463628 24° 2π15
1.10337792 25° 5π36
1.11260194 26° 13π90
1.12232624 27° 3π20
1.13257005 28° 7π45
1.14335407 29° 29π180
1.15470054 30° π6
1.1666334 31° 31π180
1.1791784 32° 8π45
1.19236329 33° 11π60
1.20621795 34° 17π90
1.22077459 35° 7π36
1.23606798 36° π5
1.25213566 37° 37π180
1.26901822 38° 19π90
1.28675957 39° 13π60
1.30540729 40° 2π9
1.32501299 41° 41π180
1.34563273 42° 7π30
1.36732746 43° 43π180
1.39016359 44° 11π45
1.41421356 45° π4
1.43955654 46° 23π90
1.46627919 47° 47π180
1.49447655 48° 4π15
1.52425309 49° 49π180
1.55572383 50° 5π18
1.58901573 51° 17π60
1.62426925 52° 13π45
1.66164014 53° 53π180
1.70130162 54° 3π10
1.7434468 55° 11π36
1.78829165 56° 14π45
1.83607846 57° 19π60
1.88707991 58° 29π90
1.94160403 59° 59π180
2 60° π3
2.06266534 61° 61π180
2.13005447 62° 31π90
2.20268926 63° 7π20
2.28117203 64° 16π45
2.36620158 65° 13π36
2.45859334 66° 11π30
2.55930467 67° 67π180
2.66946716 68° 17π45
2.79042811 69° 23π60
2.9238044 70° 7π18
3.07155349 71° 71π180
3.23606798 72° 2π5
3.42030362 73° 73π180
3.62795528 74° 37π90
3.86370331 75° 5π12
4.13356549 76° 19π45
4.44541148 77° 77π180
4.80973434 78° 13π30
5.24084306 79° 79π180
5.75877048 80° 4π9
6.39245322 81° 9π20
7.18529653 82° 41π90
8.20550905 83° 83π180
9.56677223 84° 7π15
11.47371325 85° 17π36
14.33558703 86° 43π90
19.10732261 87° 29π60
28.65370835 88° 22π45
57.2986885 89° 89π180
-57.2986885 91° 91π180
-28.65370835 92° 23π45
-19.10732261 93° 31π60
-14.33558703 94° 47π90
-11.47371325 95° 19π36
-9.56677223 96° 8π15
-8.20550905 97° 97π180
-7.18529653 98° 49π90
-6.39245322 99° 11π20
-5.75877048 100° 5π9
-5.24084306 101° 101π180
-4.80973434 102° 17π30
-4.44541148 103° 103π180
-4.13356549 104° 26π45
-3.86370331 105° 7π12
-3.62795528 106° 53π90
-3.42030362 107° 107π180
-3.23606798 108° 3π5
-3.07155349 109° 109π180
-2.9238044 110° 11π18
-2.79042811 111° 37π60
-2.66946716 112° 28π45
-2.55930467 113° 113π180
-2.45859334 114° 19π30
-2.36620158 115° 23π36
-2.28117203 116° 29π45
-2.20268926 117° 13π20
-2.13005447 118° 59π90
-2.06266534 119° 119π180
-2 120° 2π3
-1.94160403 121° 121π180
-1.88707991 122° 61π90
-1.83607846 123° 41π60
-1.78829165 124° 31π45
-1.7434468 125° 25π36
-1.70130162 126° 7π10
-1.66164014 127° 127π180
-1.62426925 128° 32π45
-1.58901573 129° 43π60
-1.55572383 130° 13π18
-1.52425309 131° 131π180
-1.49447655 132° 11π15
-1.46627919 133° 133π180
-1.43955654 134° 67π90
-1.41421356 135° 3π4
-1.39016359 136° 34π45
-1.36732746 137° 137π180
-1.34563273 138° 23π30
-1.32501299 139° 139π180
-1.30540729 140° 7π9
-1.28675957 141° 47π60
-1.26901822 142° 71π90
-1.25213566 143° 143π180
-1.23606798 144° 4π5
-1.22077459 145° 29π36
-1.20621795 146° 73π90
-1.19236329 147° 49π60
-1.1791784 148° 37π45
-1.1666334 149° 149π180
-1.15470054 150° 5π6
-1.14335407 151° 151π180
-1.13257005 152° 38π45
-1.12232624 153° 17π20
-1.11260194 154° 77π90
-1.10337792 155° 31π36
-1.09463628 156° 13π15
-1.08636038 157° 157π180
-1.07853474 158° 79π90
-1.07114499 159° 53π60
-1.06417777 160° 8π9
-1.05762068 161° 161π180
-1.05146222 162° 9π10
-1.04569176 163° 163π180
-1.04029944 164° 41π45
-1.03527618 165° 11π12
-1.03061363 166° 83π90
-1.02630411 167° 167π180
-1.02234059 168° 14π15
-1.01871669 169° 169π180
-1.01542661 170° 17π18
-1.01246513 171° 19π20
-1.00982757 172° 43π45
-1.00750983 173° 173π180
-1.00550828 174° 29π30
-1.00381984 175° 35π36
-1.0024419 176° 44π45
-1.00137235 177° 59π60
-1.00060954 178° 89π90
-1.00015233 179° 179π180
-1 180° π

How to use this arcsec calculator

The arcsec calculator is easy to use. Just enter the value and click the calculation button. This value can be an integer, decimal or fraction. If entering a fraction, remember to separate the numerator and denominator with /.

FAQS

  • Q: When to use inverse secant?
    A: In a right triangle, when the ratio of the hypotenuse side to the adjacent side of the acute angle is known, to calculate the angle, the arcsecant can be considered.
  • Q: Are arcsec and sec^-1 the same?
    A: Yes, they are both inverse secant.
  • Q: Is inverse secant the same as cosine?
    A: No. Cosine is the reciprocal of secant, not the same as the inverse function.
  • Q: Why does the arcsec calculator calculate an error?
    A: If you make a mistake using the arcsec calculator, it’s probably a typo. The value entered is outside the inverse secant domain. The domains of arcsecant are (-∞,-1] and [1, +∞).
  • Q: What is the inverse secant of 2?
    A: The inverse secant of 2 is 60 degrees, which is π3.

    arcsec(2) = 60°

  • Q: What is the inverse secant of root 2?
    A: The inverse secant of root 2 is 45 degrees, which is π4.

    arcsec(√2) = 45°

Latest Calculators

Point-Slope Form Calculator

Standard Form to Slope-Intercept Form Calculator

Slope Intercept Form Calculator

Slope Calculator: Calculate Slope, X-Intercept, Y-Intercept

Reciprocal of Complex Number Calculator

Conjugate Complex Number Calculator

Modulus of Complex Number Calculator

Complex Number Calculator

Profit Percentage Calculator: Calculate Your Profitability Easily

Attendance and Absence Percentage Calculator

Trigonometric Functions

Arccsc Calculator – Find the Exact Value of Inverse Cosecant

Arccot Calculator – Find the Exact Value of Inverse Cotangent

Arctan Calculator – Find the Exact Value of Inverse Tangent

Inverse Cosine Calculator – Find The Exact Value of Arccos

Inverse Sine Calculator – Find The Exact Value of Arcsin

Inverse Trigonometric Functions Calculator

Trigonometric Functions Conversion Calculator

Trig Calculator – Find 6 Trigonometric Functions by Angles or Sides

Cosecant Calculator

0 like
  • 0
  • 0
  • 0
  • 0
CopyRight © MathBz.com All rights reserved.
  • Home
  • About Us
  • Contact Us
  • Privacy Policy and Cookies
Back to top of page