MathBz MathBz
  • Home
  • Calculators
  • Checkers
  • Converters
  • Symbols
Search Site
Type and hit enter to search

Arccot Calculator – Find the Exact Value of Inverse Cotangent

Welcome to the arccot calculator, where you can easily calculate the corresponding angle based on the cosecant value.

Arccot Calculator

Calculate Reset

What is arccot?

Arccot is the abbreviation of arccotangent, which is the inverse function of cotangent. In addition to arccot, it can usually be represented by cot-1 or arcctg. Arccotangent is also an inverse trigonometric function, which uses the ratio of the lengths of the adjacent and opposite sides of a right-angled triangle to find the size of the included angle. Its formula is:

θ = arccot(adjacentopposite)

Arccot graph and properties

In order to ensure that cotangent has an inverse function, the domain of definition of cotangent is specified between 0 and π, and does not include 0 and π. Therefore, the graph of the inverse cotangent is as follows:

arccotangent graph

arccotangent graph

  1. Domain – The domain of arccotangent is all real numbers.
  2. Range – The inverse cotangent range is between 0 and π, excluding 0 and π.
  3. Monotonicity – In the domain, the arccotangent is monotonically decreasing.
  4. Neither odd nor even function – Because arccot(x) ≠ arccot (-x), arccotangent is not an even function. At the same time, arccot(x) ≠ -arccot(-x), so arccotangent is not an odd function.

How to calculate arccot?

The easiest way to calculate the arccot is to use the inverse cotangent calculator (also called arccot calculator). Because the inverse cotangent is difficult to calculate by hand. Some people may use the arccotangent table (given below) to find the corresponding angle, but the inverse cotangent table has obvious defects. It is impossible to list all inverse cotangent values. When encountering a value that doesn’t exist in the inverse cotangent table, there’s nothing you can do about it. So, using an inverse cotangent calculator is a last resort.

Arccot(x) Degrees Radians
57.28996163 1° π180
28.63625328 2° π90
19.08113669 3° π60
14.30066626 4° π45
11.4300523 5° π36
9.51436445 6° π30
8.14434643 7° 7π180
7.11536972 8° 2π45
6.31375151 9° π20
5.67128182 10° π18
5.14455402 11° 11π180
4.70463011 12° π15
4.33147587 13° 13π180
4.01078093 14° 7π90
3.73205081 15° π12
3.48741444 16° 4π45
3.27085262 17° 17π180
3.07768354 18° π10
2.90421088 19° 19π180
2.74747742 20° π9
2.60508906 21° 7π60
2.47508685 22° 11π90
2.35585237 23° 23π180
2.24603677 24° 2π15
2.14450692 25° 5π36
2.05030384 26° 13π90
1.96261051 27° 3π20
1.88072647 28° 7π45
1.80404776 29° 29π180
1.73205081 30° π6
1.66427948 31° 31π180
1.60033453 32° 8π45
1.53986496 33° 11π60
1.48256097 34° 17π90
1.42814801 35° 7π36
1.37638192 36° π5
1.32704482 37° 37π180
1.27994163 38° 19π90
1.23489716 39° 13π60
1.19175359 40° 2π9
1.15036841 41° 41π180
1.11061251 42° 7π30
1.07236871 43° 43π180
1.03553031 44° 11π45
1 45° π4
0.96568877 46° 23π90
0.93251509 47° 47π180
0.90040404 48° 4π15
0.86928674 49° 49π180
0.83909963 50° 5π18
0.80978403 51° 17π60
0.78128563 52° 13π45
0.75355405 53° 53π180
0.72654253 54° 3π10
0.70020754 55° 11π36
0.67450852 56° 14π45
0.64940759 57° 19π60
0.62486935 58° 29π90
0.60086062 59° 59π180
0.57735027 60° π3
0.55430905 61° 61π180
0.53170943 62° 31π90
0.50952545 63° 7π20
0.48773259 64° 16π45
0.46630766 65° 13π36
0.44522869 66° 11π30
0.42447482 67° 67π180
0.40402623 68° 17π45
0.38386404 69° 23π60
0.36397023 70° 7π18
0.34432761 71° 71π180
0.3249197 72° 2π5
0.30573068 73° 73π180
0.28674539 74° 37π90
0.26794919 75° 5π12
0.249328 76° 19π45
0.23086819 77° 77π180
0.21255656 78° 13π30
0.19438031 79° 79π180
0.17632698 80° 4π9
0.15838444 81° 9π20
0.14054083 82° 41π90
0.12278456 83° 83π180
0.10510424 84° 7π15
0.08748866 85° 17π36
0.06992681 86° 43π90
0.05240778 87° 29π60
0.03492077 88° 22π45
0.01745506 89° 89π180
0 90° π2
-0.01745506 91° 91π180
-0.03492077 92° 23π45
-0.05240778 93° 31π60
-0.06992681 94° 47π90
-0.08748866 95° 19π36
-0.10510424 96° 8π15
-0.12278456 97° 97π180
-0.14054083 98° 49π90
-0.15838444 99° 11π20
-0.17632698 100° 5π9
-0.19438031 101° 101π180
-0.21255656 102° 17π30
-0.23086819 103° 103π180
-0.249328 104° 26π45
-0.26794919 105° 7π12
-0.28674539 106° 53π90
-0.30573068 107° 107π180
-0.3249197 108° 3π5
-0.34432761 109° 109π180
-0.36397023 110° 11π18
-0.38386404 111° 37π60
-0.40402623 112° 28π45
-0.42447482 113° 113π180
-0.44522869 114° 19π30
-0.46630766 115° 23π36
-0.48773259 116° 29π45
-0.50952545 117° 13π20
-0.53170943 118° 59π90
-0.55430905 119° 119π180
-0.57735027 120° 2π3
-0.60086062 121° 121π180
-0.62486935 122° 61π90
-0.64940759 123° 41π60
-0.67450852 124° 31π45
-0.70020754 125° 25π36
-0.72654253 126° 7π10
-0.75355405 127° 127π180
-0.78128563 128° 32π45
-0.80978403 129° 43π60
-0.83909963 130° 13π18
-0.86928674 131° 131π180
-0.90040404 132° 11π15
-0.93251509 133° 133π180
-0.96568877 134° 67π90
-1 135° 3π4
-1.03553031 136° 34π45
-1.07236871 137° 137π180
-1.11061251 138° 23π30
-1.15036841 139° 139π180
-1.19175359 140° 7π9
-1.23489716 141° 47π60
-1.27994163 142° 71π90
-1.32704482 143° 143π180
-1.37638192 144° 4π5
-1.42814801 145° 29π36
-1.48256097 146° 73π90
-1.53986496 147° 49π60
-1.60033453 148° 37π45
-1.66427948 149° 149π180
-1.73205081 150° 5π6
-1.80404776 151° 151π180
-1.88072647 152° 38π45
-1.96261051 153° 17π20
-2.05030384 154° 77π90
-2.14450692 155° 31π36
-2.24603677 156° 13π15
-2.35585237 157° 157π180
-2.47508685 158° 79π90
-2.60508906 159° 53π60
-2.74747742 160° 8π9
-2.90421088 161° 161π180
-3.07768354 162° 9π10
-3.27085262 163° 163π180
-3.48741444 164° 41π45
-3.73205081 165° 11π12
-4.01078093 166° 83π90
-4.33147587 167° 167π180
-4.70463011 168° 14π15
-5.14455402 169° 169π180
-5.67128182 170° 17π18
-6.31375151 171° 19π20
-7.11536972 172° 43π45
-8.14434643 173° 173π180
-9.51436445 174° 29π30
-11.4300523 175° 35π36
-14.30066626 176° 44π45
-19.08113669 177° 59π60
-28.63625328 178° 89π90
-57.28996163 179° 179π180

How to use this arccot calculator

Don’t worry, the arccot calculator is very easy to use. Just enter the value and click the calculation button. This value can be an integer, decimal or fraction. If entering a fraction, remember to separate the numerator and denominator with /. For example, 1/2, 3/5, 3/8 and so on.

FAQS

  • Q: Are arccot and cot^-1 the same?
    A: Yes, they are the same, both represent the inverse cotangent.
  • Q: What is the inverse cotangent of 1?
    A: The inverse cotangent of 1 is 45 degrees, which is π4.

    arccot(1) = 45°

  • Q: What is the inverse cotangent of the square root of 3?
    A: The inverse cotangent of the square root of 3 is 30 degrees, which is π6.

    arccot(√3) = 30°

  • Q: Are inverse cotangent and tangent the same?
    A: No. Tangent is the reciprocal of cotangent. Not the same as the inverse cotangent.
  • Q: What is the domain and range of the inverse cotangent?
    A: The domain of the inverse cotangent is all real numbers and the range of the inverse cotangent is (0, π).

Latest Calculators

Point-Slope Form Calculator

Standard Form to Slope-Intercept Form Calculator

Slope Intercept Form Calculator

Slope Calculator: Calculate Slope, X-Intercept, Y-Intercept

Reciprocal of Complex Number Calculator

Conjugate Complex Number Calculator

Modulus of Complex Number Calculator

Complex Number Calculator

Profit Percentage Calculator: Calculate Your Profitability Easily

Attendance and Absence Percentage Calculator

Trigonometric Functions

Arccsc Calculator – Find the Exact Value of Inverse Cosecant

Arcsec Calculator – Find the Exact Value of Inverse Secant

Arctan Calculator – Find the Exact Value of Inverse Tangent

Inverse Cosine Calculator – Find The Exact Value of Arccos

Inverse Sine Calculator – Find The Exact Value of Arcsin

Inverse Trigonometric Functions Calculator

Trigonometric Functions Conversion Calculator

Trig Calculator – Find 6 Trigonometric Functions by Angles or Sides

Cosecant Calculator

0 like
  • 0
  • 0
  • 0
  • 0
CopyRight © MathBz.com All rights reserved.
  • Home
  • About Us
  • Contact Us
  • Privacy Policy and Cookies
Back to top of page