Welcome to the arccot calculator, where you can easily calculate the corresponding angle based on the cosecant value.
What is arccot?
Arccot is the abbreviation of arccotangent, which is the inverse function of cotangent. In addition to arccot, it can usually be represented by cot-1 or arcctg. Arccotangent is also an inverse trigonometric function, which uses the ratio of the lengths of the adjacent and opposite sides of a right-angled triangle to find the size of the included angle. Its formula is:
θ = arccot(adjacentopposite)
Arccot graph and properties
In order to ensure that cotangent has an inverse function, the domain of definition of cotangent is specified between 0 and π, and does not include 0 and π. Therefore, the graph of the inverse cotangent is as follows:
- Domain – The domain of arccotangent is all real numbers.
- Range – The inverse cotangent range is between 0 and π, excluding 0 and π.
- Monotonicity – In the domain, the arccotangent is monotonically decreasing.
- Neither odd nor even function – Because arccot(x) ≠ arccot (-x), arccotangent is not an even function. At the same time, arccot(x) ≠ -arccot(-x), so arccotangent is not an odd function.
How to calculate arccot?
The easiest way to calculate the arccot is to use the inverse cotangent calculator (also called arccot calculator). Because the inverse cotangent is difficult to calculate by hand. Some people may use the arccotangent table (given below) to find the corresponding angle, but the inverse cotangent table has obvious defects. It is impossible to list all inverse cotangent values. When encountering a value that doesn’t exist in the inverse cotangent table, there’s nothing you can do about it. So, using an inverse cotangent calculator is a last resort.
Arccot(x) | Degrees | Radians |
57.28996163 | 1° | π180 |
28.63625328 | 2° | π90 |
19.08113669 | 3° | π60 |
14.30066626 | 4° | π45 |
11.4300523 | 5° | π36 |
9.51436445 | 6° | π30 |
8.14434643 | 7° | 7π180 |
7.11536972 | 8° | 2π45 |
6.31375151 | 9° | π20 |
5.67128182 | 10° | π18 |
5.14455402 | 11° | 11π180 |
4.70463011 | 12° | π15 |
4.33147587 | 13° | 13π180 |
4.01078093 | 14° | 7π90 |
3.73205081 | 15° | π12 |
3.48741444 | 16° | 4π45 |
3.27085262 | 17° | 17π180 |
3.07768354 | 18° | π10 |
2.90421088 | 19° | 19π180 |
2.74747742 | 20° | π9 |
2.60508906 | 21° | 7π60 |
2.47508685 | 22° | 11π90 |
2.35585237 | 23° | 23π180 |
2.24603677 | 24° | 2π15 |
2.14450692 | 25° | 5π36 |
2.05030384 | 26° | 13π90 |
1.96261051 | 27° | 3π20 |
1.88072647 | 28° | 7π45 |
1.80404776 | 29° | 29π180 |
1.73205081 | 30° | π6 |
1.66427948 | 31° | 31π180 |
1.60033453 | 32° | 8π45 |
1.53986496 | 33° | 11π60 |
1.48256097 | 34° | 17π90 |
1.42814801 | 35° | 7π36 |
1.37638192 | 36° | π5 |
1.32704482 | 37° | 37π180 |
1.27994163 | 38° | 19π90 |
1.23489716 | 39° | 13π60 |
1.19175359 | 40° | 2π9 |
1.15036841 | 41° | 41π180 |
1.11061251 | 42° | 7π30 |
1.07236871 | 43° | 43π180 |
1.03553031 | 44° | 11π45 |
1 | 45° | π4 |
0.96568877 | 46° | 23π90 |
0.93251509 | 47° | 47π180 |
0.90040404 | 48° | 4π15 |
0.86928674 | 49° | 49π180 |
0.83909963 | 50° | 5π18 |
0.80978403 | 51° | 17π60 |
0.78128563 | 52° | 13π45 |
0.75355405 | 53° | 53π180 |
0.72654253 | 54° | 3π10 |
0.70020754 | 55° | 11π36 |
0.67450852 | 56° | 14π45 |
0.64940759 | 57° | 19π60 |
0.62486935 | 58° | 29π90 |
0.60086062 | 59° | 59π180 |
0.57735027 | 60° | π3 |
0.55430905 | 61° | 61π180 |
0.53170943 | 62° | 31π90 |
0.50952545 | 63° | 7π20 |
0.48773259 | 64° | 16π45 |
0.46630766 | 65° | 13π36 |
0.44522869 | 66° | 11π30 |
0.42447482 | 67° | 67π180 |
0.40402623 | 68° | 17π45 |
0.38386404 | 69° | 23π60 |
0.36397023 | 70° | 7π18 |
0.34432761 | 71° | 71π180 |
0.3249197 | 72° | 2π5 |
0.30573068 | 73° | 73π180 |
0.28674539 | 74° | 37π90 |
0.26794919 | 75° | 5π12 |
0.249328 | 76° | 19π45 |
0.23086819 | 77° | 77π180 |
0.21255656 | 78° | 13π30 |
0.19438031 | 79° | 79π180 |
0.17632698 | 80° | 4π9 |
0.15838444 | 81° | 9π20 |
0.14054083 | 82° | 41π90 |
0.12278456 | 83° | 83π180 |
0.10510424 | 84° | 7π15 |
0.08748866 | 85° | 17π36 |
0.06992681 | 86° | 43π90 |
0.05240778 | 87° | 29π60 |
0.03492077 | 88° | 22π45 |
0.01745506 | 89° | 89π180 |
0 | 90° | π2 |
-0.01745506 | 91° | 91π180 |
-0.03492077 | 92° | 23π45 |
-0.05240778 | 93° | 31π60 |
-0.06992681 | 94° | 47π90 |
-0.08748866 | 95° | 19π36 |
-0.10510424 | 96° | 8π15 |
-0.12278456 | 97° | 97π180 |
-0.14054083 | 98° | 49π90 |
-0.15838444 | 99° | 11π20 |
-0.17632698 | 100° | 5π9 |
-0.19438031 | 101° | 101π180 |
-0.21255656 | 102° | 17π30 |
-0.23086819 | 103° | 103π180 |
-0.249328 | 104° | 26π45 |
-0.26794919 | 105° | 7π12 |
-0.28674539 | 106° | 53π90 |
-0.30573068 | 107° | 107π180 |
-0.3249197 | 108° | 3π5 |
-0.34432761 | 109° | 109π180 |
-0.36397023 | 110° | 11π18 |
-0.38386404 | 111° | 37π60 |
-0.40402623 | 112° | 28π45 |
-0.42447482 | 113° | 113π180 |
-0.44522869 | 114° | 19π30 |
-0.46630766 | 115° | 23π36 |
-0.48773259 | 116° | 29π45 |
-0.50952545 | 117° | 13π20 |
-0.53170943 | 118° | 59π90 |
-0.55430905 | 119° | 119π180 |
-0.57735027 | 120° | 2π3 |
-0.60086062 | 121° | 121π180 |
-0.62486935 | 122° | 61π90 |
-0.64940759 | 123° | 41π60 |
-0.67450852 | 124° | 31π45 |
-0.70020754 | 125° | 25π36 |
-0.72654253 | 126° | 7π10 |
-0.75355405 | 127° | 127π180 |
-0.78128563 | 128° | 32π45 |
-0.80978403 | 129° | 43π60 |
-0.83909963 | 130° | 13π18 |
-0.86928674 | 131° | 131π180 |
-0.90040404 | 132° | 11π15 |
-0.93251509 | 133° | 133π180 |
-0.96568877 | 134° | 67π90 |
-1 | 135° | 3π4 |
-1.03553031 | 136° | 34π45 |
-1.07236871 | 137° | 137π180 |
-1.11061251 | 138° | 23π30 |
-1.15036841 | 139° | 139π180 |
-1.19175359 | 140° | 7π9 |
-1.23489716 | 141° | 47π60 |
-1.27994163 | 142° | 71π90 |
-1.32704482 | 143° | 143π180 |
-1.37638192 | 144° | 4π5 |
-1.42814801 | 145° | 29π36 |
-1.48256097 | 146° | 73π90 |
-1.53986496 | 147° | 49π60 |
-1.60033453 | 148° | 37π45 |
-1.66427948 | 149° | 149π180 |
-1.73205081 | 150° | 5π6 |
-1.80404776 | 151° | 151π180 |
-1.88072647 | 152° | 38π45 |
-1.96261051 | 153° | 17π20 |
-2.05030384 | 154° | 77π90 |
-2.14450692 | 155° | 31π36 |
-2.24603677 | 156° | 13π15 |
-2.35585237 | 157° | 157π180 |
-2.47508685 | 158° | 79π90 |
-2.60508906 | 159° | 53π60 |
-2.74747742 | 160° | 8π9 |
-2.90421088 | 161° | 161π180 |
-3.07768354 | 162° | 9π10 |
-3.27085262 | 163° | 163π180 |
-3.48741444 | 164° | 41π45 |
-3.73205081 | 165° | 11π12 |
-4.01078093 | 166° | 83π90 |
-4.33147587 | 167° | 167π180 |
-4.70463011 | 168° | 14π15 |
-5.14455402 | 169° | 169π180 |
-5.67128182 | 170° | 17π18 |
-6.31375151 | 171° | 19π20 |
-7.11536972 | 172° | 43π45 |
-8.14434643 | 173° | 173π180 |
-9.51436445 | 174° | 29π30 |
-11.4300523 | 175° | 35π36 |
-14.30066626 | 176° | 44π45 |
-19.08113669 | 177° | 59π60 |
-28.63625328 | 178° | 89π90 |
-57.28996163 | 179° | 179π180 |
How to use this arccot calculator
Don’t worry, the arccot calculator is very easy to use. Just enter the value and click the calculation button. This value can be an integer, decimal or fraction. If entering a fraction, remember to separate the numerator and denominator with /. For example, 1/2, 3/5, 3/8 and so on.
FAQS
- Q: Are arccot and cot^-1 the same?A: Yes, they are the same, both represent the inverse cotangent.
- Q: What is the inverse cotangent of 1?A: The inverse cotangent of 1 is 45 degrees, which is π4.
arccot(1) = 45°
- Q: What is the inverse cotangent of the square root of 3?A: The inverse cotangent of the square root of 3 is 30 degrees, which is π6.
arccot(√3) = 30°
- Q: Are inverse cotangent and tangent the same?A: No. Tangent is the reciprocal of cotangent. Not the same as the inverse cotangent.
- Q: What is the domain and range of the inverse cotangent?A: The domain of the inverse cotangent is all real numbers and the range of the inverse cotangent is (0, π).
Latest Calculators
Standard Form to Slope-Intercept Form Calculator
Slope Intercept Form Calculator
Slope Calculator: Calculate Slope, X-Intercept, Y-Intercept
Reciprocal of Complex Number Calculator
Conjugate Complex Number Calculator
Modulus of Complex Number Calculator
Profit Percentage Calculator: Calculate Your Profitability Easily
Attendance and Absence Percentage Calculator
Trigonometric Functions
Arccsc Calculator – Find the Exact Value of Inverse Cosecant
Arcsec Calculator – Find the Exact Value of Inverse Secant
Arctan Calculator – Find the Exact Value of Inverse Tangent
Inverse Cosine Calculator – Find The Exact Value of Arccos
Inverse Sine Calculator – Find The Exact Value of Arcsin
Inverse Trigonometric Functions Calculator
Trigonometric Functions Conversion Calculator
Trig Calculator – Find 6 Trigonometric Functions by Angles or Sides